

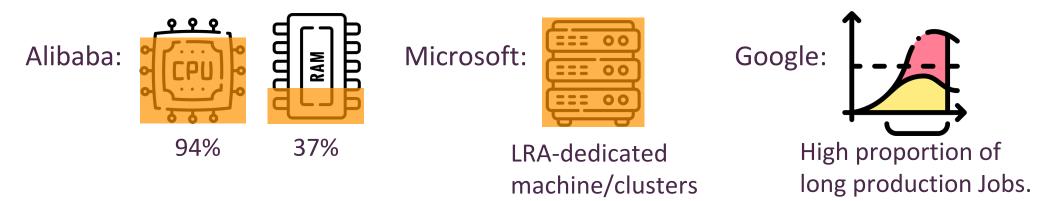
Metis: Learning to Schedule Long-Running Applications in Shared Container Clusters at Scale

Luping Wang^{*}, Qizhen Weng^{*}, Wei Wang, Chen Chen, Bo Li Hong Kong University of Science and Technology

Long-Running Applications (LRAs) are critical in modern datacenters

- Also known as latency-critic (LC) services, which are of commercial value, e.g.,
- Stream processingInteractive data analytics
 - Caching/Storage services ...

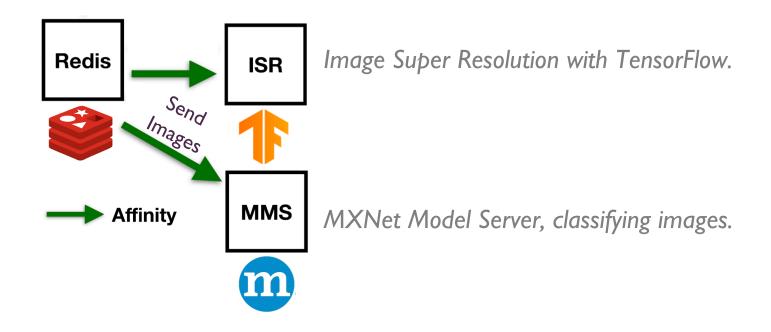
LRAs usually run for hours to months and occupy substantial resources. \bullet



Reiss, Charles, et al. "Heterogeneity and dynamicity of clouds at scale: Google trace analysis." Proceedings of the Third ACM Symposium on Cloud Computing. 2012. Garefalakis, Panagiotis, et al. "Medea: scheduling of long running applications in shared production clusters." Proceedings of the Thirteenth EuroSys Conference. 2018. "Alibaba production cluster data," https://github.com/alibaba/clusterdata.

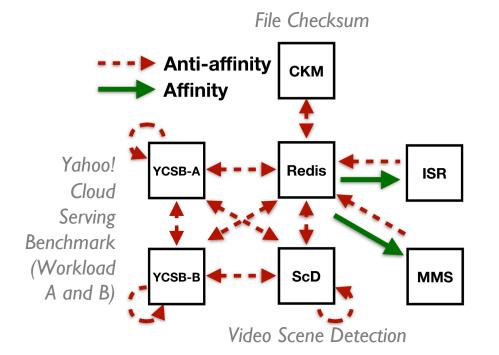
LRAs are non-trivial to schedule

- LRAs have stringent SLO (Service-Level Objective) requirements.
- LRAs have sophisticated performance interactions among themselves.
 - I/O dependencies *affinity*: better co-located



LRAs are non-trivial to schedule

- LRAs have stringent SLO (Service-Level Objective) requirements.
- LRAs have sophisticated performance interactions among themselves.
 - I/O dependencies *affinity*: better co-located
 - Shared resources contention *anti-affinity*: better scattered

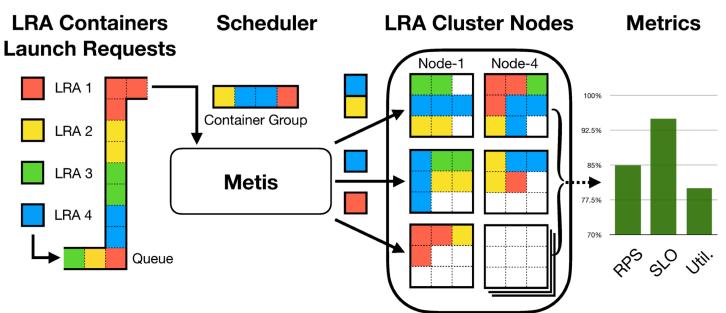


- CPU last-level cache
- Memory bandwidth
- Network and disk I/O ...

SC2O

Metis: Learning-based LRA scheduler

- Pursue LRAs' best endto-end performance of *various metrics*.
- Directly learn LRAs' interactions from traces, instead of prior knowledge.
- Scale to thousands of nodes within moderate latency.



Outline

- Introduction
- Prior Arts and Metis' Approach
- Hierarchical Reinforcement Learning
- Evaluation

Prior Arts: Constraint-Based Schedulers

Medea scheduler workflow:

- (0. Cluster operators identify interactions.)
- I. Manually set placement constraints.
- 2. Solve Integer linear program (ILP).
- 3. Executes ILP solution.

maximize $\frac{w_1}{k}\sum_{i=1}^k S_i + \frac{w_2}{m}\sum_{l=1}^m v_c^l + \frac{w_3}{N}\sum_{n=1}^N z_n$
subject to: $\forall i, j : \sum_{n=1}^{N} X_{ijn} \leq 1$
$\forall n: \sum_{i=1}^{k} \sum_{j=1}^{T_i} r_{ij} \cdot X_{ijn} \leq R_n^f$
$\forall i: \sum_{n=1}^{N} \sum_{j=1}^{T_i} X_{ijn} - T_i S_i = 0$
$\forall n: \sum_{i=1}^{k} \sum_{j=1}^{T_i} r_{ij} \cdot X_{ijn} - B_n(1-z_n) \le R_n^f - r_{min}$

Prior Arts: Constraint-Based Schedulers

Problems:

- Expensive to get constraints.
- Inefficient at scale 2 (>10 hours to place 3,000 containers to 700 machines).
- 3. Suboptimal. Constraints are qualitative, but not quantitative. Esp. given conflicting constraints.

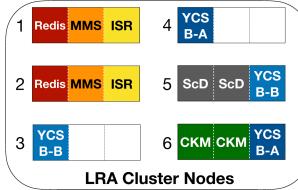
Violate 4 constraints 0.93 RPS **Medea** (constraint-based) 4 MMS MMS HAS B-A Redis YCS YCS B-B B-B 2 Redis ScD 5 **СКМ** 6 CKM ScD YCS ISR ISR 3

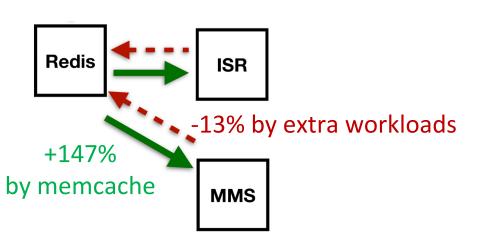
LRA Cluster Nodes

3

Violate 6 constraints 1.16 RPS

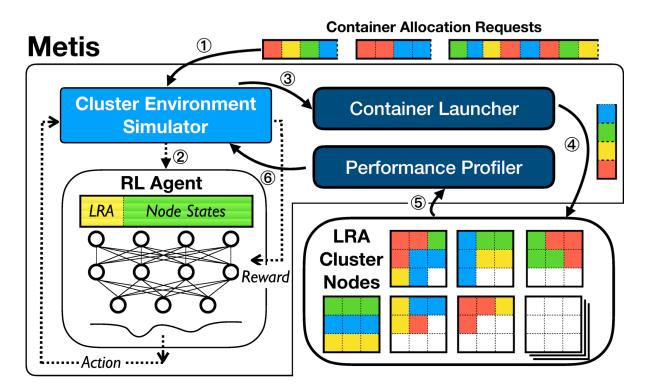
Metis (learning-based)





Metis: Make end-to-end scheduling by *Reinforcement Learning*

- I. Group container requests.
- 2. Train an RL agent for each group.
- 3. Collect placement decisions.
- 4. Launch containers in cluster.
- 5. Profile containers' performance.
- 6. Improve RL env. simulator.



Implementation

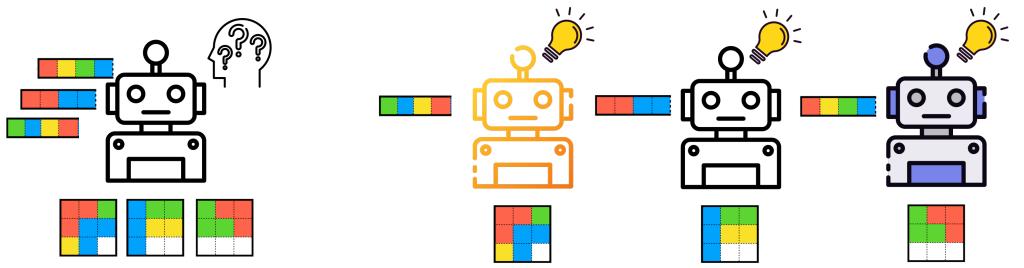
Algorithms, baselines, and benchmarks (in Docker) are available at https://github.com/Metis-RL-based-container-sche/Metis

Metis: Training dedicated RL agents on the spot

Trades computation and latency for better performance.

Offline-trained agent performs badly, because the input are highly variant:

- Cluster state changes after each deployment.
- Input container group can have *millions* of combinations, e.g.,
 Picking 30 containers from 7 apps (with repetition) gives ~2 million outcomes.

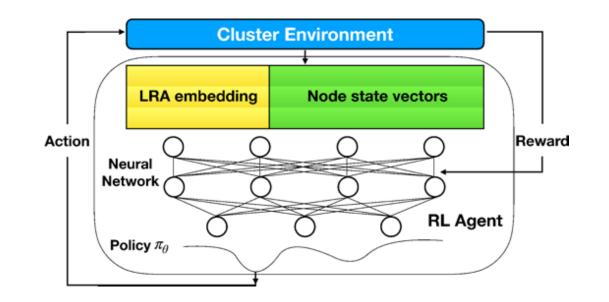


Outline

- Introduction
- Prior Arts and Metis' Approach
- Hierarchical Reinforcement Learning
- Evaluation

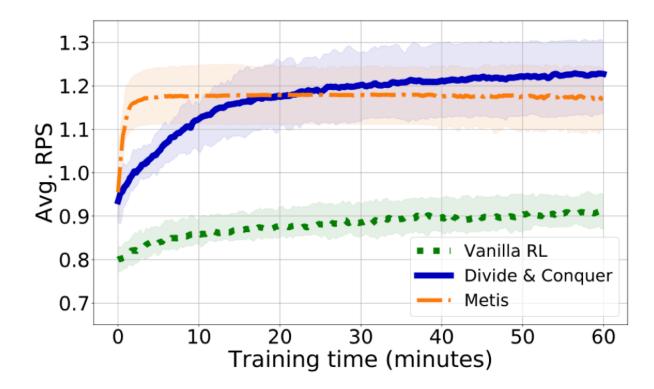
Hierarchical Reinforcement Learning

- Co-locating containers using Reinforcement Learning
 - End-to-end scheduling process
 - Intelligent interference-capture method: try-trail
 - Generally support various scheduling objectives
 - Scalable



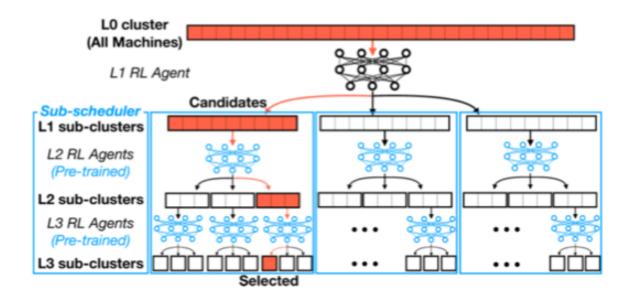
Hierarchical Reinforcement Learning

- Novelty: Hierarchical Reinforcement Learning for Scalability
 - Cluster scale: thousands of machines
 - Large <u>action and state space</u>: poor performance



Hierarchical Reinforcement Learning

- Novelty: Hierarchical Reinforcement Learning for Scalability
 - Select a hosting machine: select a sub-cluster first
 - Reduced state and action space
 - Reusable building blocks (Spatial)
 - Offline vs Online



Outline

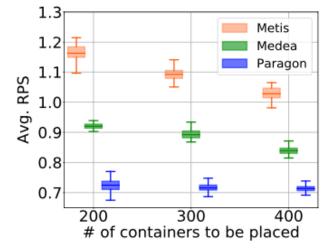
- Introduction
- Prior Arts and Metis' Approach
- Hierarchical Reinforcement Learning
- Evaluation

Evaluation: Setup

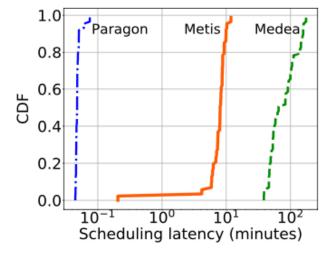
- Prototype deployment on a EC2 clusters
 - Scale: a medium one with 81 nodes and a large one with 729 nodes.
 - Each node: m5.4xlarge instance with 16 vCPUs, 64 GB memory
 - Docker containers: each with 2 vCPUs and 8 GB memory.
- Metrics
 - Container performance: RPS
 - Cluster resource fragmentation: % of empty nodes
- Baselines
 - Medea
 - Paragon

SC2O

Evaluation: Scheduling Performance



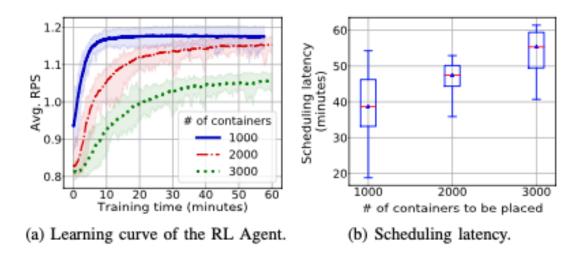
(a) Average RPS with various container group sizes.

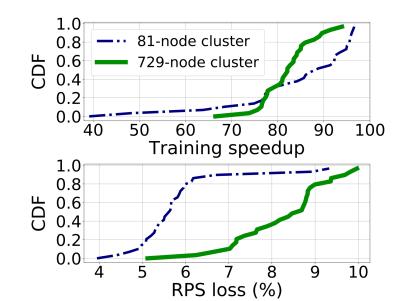


(b) Distribution of scheduling latency in all container groups.

- 81-node cluster
- 200-400 containers
- 25% and 61% higher RPS than Medea and Paragon
- Modest scheduling latency within 10 min

Evaluation: Scheduling Scalability

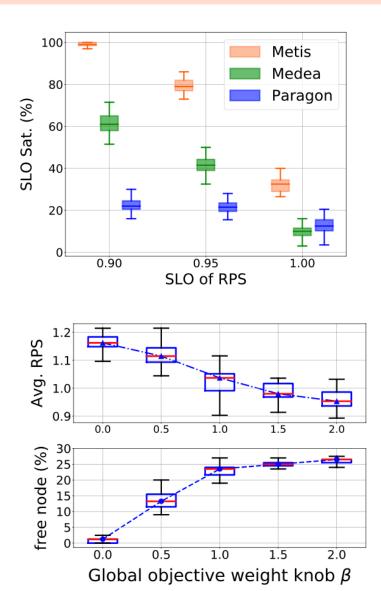




- Large-scale experiments
 - 729-node, 1k-3k containers
 - Comparable performance to that in previous 81-node clusters
 - Timely scheduling within 1 hour

- Sub-scheduler design
 - Accelerates RL convergence by 40×–95×
 - less than 10% loss of RPS

Evaluation: Support of Various Scheduling Objectives



- Maximizing SLO Satisfactions
 - Outperforming Medea and Paragon by 1.6× and 4.4× on average

- Minimizing Resource Fragmentation
 - Reward: weighted sum of RPS and vacant machines
 - Smooth trade-off between the two objectives