
CARASERVE: CPU-Assisted and Rank-Aware LoRA Serving for Generative LLM
Inference

Suyi Li∗, Hanfeng Lu∗, Tianyuan Wu, Minchen Yu⋄, Qizhen Weng‡, Xusheng Chen†, Yizhou Shan†,
Binhang Yuan, Wei Wang

HKUST, ⋄CUHK-Shenzhen, ‡Shanghai AI Laboratory, †Huawei Cloud

Abstract
Pre-trained large language models (LLMs) often need spe-

cialization for domain-specific tasks. Low-Rank Adaptation
(LoRA) is a popular approach that adapts a base model to mul-
tiple tasks by adding lightweight trainable adapters. In this pa-
per, we present CARASERVE, a system that efficiently serves
many LoRA adapters derived from a common base model.
CARASERVE maintains the base model on GPUs and dy-
namically loads activated LoRA adapters from main memory.
As GPU loading results in a cold-start that substantially de-
lays token generation, CARASERVE employs a CPU-assisted
approach. It early starts the activated adapters on CPUs for
prefilling as they are being loaded onto GPUs; after loading
completes, it then switches to the GPUs for generative LoRA
inference. CARASERVE develops a highly optimized synchro-
nization mechanism to efficiently coordinate LoRA computa-
tion on the CPU and GPU. Moreover, CARASERVE employs
a rank-aware scheduling algorithm to optimally schedule het-
erogeneous LoRA requests for maximum service-level objec-
tive (SLO) attainment. We have implemented CARASERVE
and evaluated it against state-of-the-art LoRA serving sys-
tems. Our results demonstrate that CARASERVE can speed up
the average request serving latency by up to 1.4× and achieve
an SLO attainment of up to 99%.

1 Introduction

Large language models (LLMs) are making significant strides
in generative AI [28, 34], enabling a variety of novel applica-
tions across numerous domains. Deploying LLMs for domain-
specific tasks requires specialization [5, 17], which involves
adapting a pre-trained base model to different downstream
tasks. Low-Rank Adaptation [2, 5, 9] (LoRA) has emerged as
a popular parameter-efficient fine-tuning (PEFT) approach.
It preserves the base model’s parameters and adds trainable
rank decomposition matrices to each Transformer layer. This
method significantly reduces the number of trainable param-
eters, allowing the creation of numerous lightweight LoRA
adapters from a single base model. As LoRA gains popularity
in LLM deployment, efficiently serving them in a multi-tenant
cloud becomes critically important [1, 23].

*Equal contribution

GPU-Efficient Cold-Start-Free SLO-Aware
HF-PEFT [14] ✗ ✓ ✗
S-LoRA [23] ✓ ✗ ✗
Punica [1] ✓ ✗ ✗
CARASERVE ✓ ✓ ✓

Table 1: Summarization of LoRA serving systems.

However, developing a system for efficient LoRA serving
presents non-trivial challenges. One straightforward solution
is to merge the weights of a LoRA adapter into the parameters
of the base model, resulting in an independent, specialized
LLM instance of a full size (e.g., HF-PEFT [14]). This ap-
proach, though easy to implement, is expensive as it requires
duplicating the base model for individual LoRA instances,
consuming a substantial amount of GPU memory. Recently,
pioneering attempts have been made to enable base model
multiplexing between LoRA adapters [1,23], in which the sys-
tem maintains a shared copy of the base LLM on the GPU and
loads LoRA adapters from main memory as requests arrive.
Although this approach is GPU-efficient, it results in a severe
cold-start problem when a requested LoRA adapter is not on
GPU and must be fetched from main memory. Depending on
the adapter size, a single cold-start can take tens of millisec-
onds. This delay affects not only the time-to-first-token of the
newly arrived request but also the decoding process of other
ongoing requests when continuous batching [10, 11, 16, 31]
is in use, resulting in an average of 25% latency increase in
inference serving in our experiments (§2.3).

We believe a desirable LoRA serving system should exploit
base model multiplexing for GPU-efficient inference, without
incurring high cold-start overhead (cold-start-free). Addition-
ally, as a multi-tenant system, it should prioritize meeting
users’ service-level objectives in latency (SLO-aware) by ju-
diciously scheduling their inference requests to heterogeneous
LoRA models with varying ranks. Unfortunately, current sys-
tems fail to fulfill these requirements (see the summariza-
tion in Table 1). To bridge this gap, we present CARASERVE
(CPU-assisted, Rank-aware Serve), a multi-tenant LoRA serv-
ing system that achieves all three design goals concurrently.
We highlight the design approaches and key techniques of
CARASERVE as follows:

1

ar
X

iv
:2

40
1.

11
24

0v
1

 [
cs

.D
C

]
 2

0
Ja

n
20

24

Time

GPU

CPU

Prefill Decode

Load Adapters

Prefill/Decode Computation on Designated Devices

Figure 1: Illustration of CPU-assisted LoRA serving.

CPU-assisted LoRA serving. Similar to the existing LLM-
multiplexing solutions [1, 23], CARASERVE maintains the
base LLM on GPUs and all LoRA adapters in main memory,
which are dynamically loaded onto the GPU as new requests
arrive. Yet, instead of waiting for the adapter loading to com-
plete, CARASERVE concurrently runs the adapter on CPU to
early-start the prefill phase. Once the adapter is fully loaded,
CARASERVE switches to GPU computation to resume the pre-
fill phase, if not finished, and then proceed to the subsequent
decoding phase (Fig. 1), alongside other ongoing requests
using continuous batching [10, 11, 16, 31]. This CPU-assisted
approach effectively mitigates the cold-start overhead, sub-
stantially improving decoding efficiency.

Nevertheless, implementing CPU-assisted LoRA serving
poses several challenges. LLMs are constructed using the
Transformer [29] architecture, which consists of multiple at-
tention layers. During inference, the computed output of the
base LLM needs to be synchronized with that of the LoRA
models at each layer. Since these computations are split be-
tween the CPU and GPU, efficient layer-wise synchronization
between the two devices is crucial. Additionally, the frequent
triggering of LoRA computations (e.g., 32 times per decoding
iteration in Llama2-7B [28]) leads to high invocation over-
heads, such as inter-process communication (IPC) and data
transfer, which can significantly increase inference latency by
79.4%. Moreover, offloading the heavy prefill computation
to the CPU may create a new bottleneck due to its limited
parallelism compared with GPU.

We address these challenges with a series of techniques.
To efficiently coordinate on-GPU LLM computation and on-
CPU LoRA computation, we develop a specialized CUDA
operator that optimally pipelines the two computations by
means of asynchronous memory copy and signaling. Addi-
tionally, we employ shared memory to enable fast data ex-
change between the base LLM process and multiple CPU
LoRA processes, eliminating the need for data copying and
serialization. This reduces the LoRA invocation overhead to
less than 1 ms. Furthermore, we devise a profiling-guided par-
allelization scheme to scale out LoRA computations across
multiple CPUs to eliminate the potential bottleneck. Putting
it altogether, CARASERVE can reduce the prefill latency by
57.9%.

Rank-aware request scheduling. In multi-tenant LoRA serv-
ing, users often request to utilize heterogeneous adapters with
different ranks, which can be batched together to multiplex

the base LLM [1, 23]. However, we observe significant per-
formance variations in decoding when batching different sets
of heterogeneous LoRA adapters (§2.3). This highlights the
need for intelligent request scheduling that takes into account
the rank heterogeneity and its impact on decoding. To this end,
we establish a performance model through extensive system
profiling, which can be used to accurately predict the decoding
latency for a specific batch of LoRA adapters. Leveraging this
information, we design a rank-aware scheduling algorithm
to enhance cluster-wide performance and meet users’ latency
SLOs. Specifically, when a new request arrives, the scheduler
evaluates all inference servers that possess the required LoRA
adapters and calculates a cost score for each server using the
performance model. This score measures the additional la-
tency cost and SLO violation on the current ongoing requests
if the new request were to be accommodated in that server.
The scheduler then selects the server with the minimum cost
score and routes the request to it accordingly.

We have implemented CARASERVE as a pluggable LLM
serving module in LightLLM [16] and evaluated its perfor-
mance using Llama2-7B/30B/70B [28] with requests gen-
erated from synthetic and real-world traces. Our evaluation
highlights that CARASERVE outperforms S-LoRA [23], the
state-of-the-art solution, by accelerating the average serving
latency of inference requests by up to 1.4×. We also eval-
uated the rank-aware scheduling algorithm through testbed
experiments and large-scale simulations. Compared to popu-
lar scheduling policies, including the one used in the existing
adapter serving system [1], CARASERVE reduces the aver-
age time per token by up to 36.4% and achieves an SLO
attainment of 99%.

We will release CARASERVE as an open-source software
after the double-blind review process.

2 Background and Motivation

In this section, we give a primer to LLM inference and low-
rank adaptation (LoRA). We also discuss the key challenges
that arise when serving LoRA models in a multi-tenant cloud.

2.1 LLM Inference

Generative LLM inference computation. LLM inference is
a process that involves generating a sequence of output tokens
in response to an input prompt, which is a list of tokens. This
process consists of two phases: prefill and decoding. During
the prefill phase, the input sequence is used to generate the
key-value cache (KV cache) for each transformer layer; the
decoding phase then uses the previous KV cache to generate
new tokens step-by-step and update the KV cache accord-
ingly. The computation of one transformer layer can be sum-
marized as follows. Denote the batch size by B, the prompt
sequence length by L, the hidden dimension of the transformer

2

by H, and the intermediate size by H ′. We have weight matri-
ces of the i-th transformer layer: Wi

K ,Wi
Q,W

i
V ,Wi

O ∈ RH×H ,
Wi

1 ∈RH×H ′ , and Wi
2 ∈RH ′×H . During the prefill phase, let xi

be the input of the i-th transformer layer, and the key, value,
query, and output of the attention layer respectively spec-
ified as xi

K ,xi
V ,xi

Q,x
i
Out ∈ RB×L×H . The computation of the

cached key, value is given by xi
K = xi ·Wi

K and xi
V = xi ·Wi

V .
The remaining computation in this transformer layer is given
by

xi
Q = xi ·Wi

Q,

xi
Out = fsoftmax

(
xi

Qxi
K

T

√
H

)
·xi

V ·Wi
O +xi,

xi+1 = frelu
(
xi

Out ·W
i
1
)
·Wi

2 +xi
Out.

During the decoding phase, let ti ∈ RB×1×H be the em-
bedding of the current generated token in the i-th layer. The
inference computation involves i) updating the KV cache, i.e.,
xi

K ← fconcat
(
xi

K , ti ·Wk
K
)
, xi

V ← fconcat
(
xi

V , ti ·Wi
V
)
, and ii)

computing the output of the current layer:

ti
Q = ti ·Wi

Q,

ti
Out = fsoftmax

(
ti
Qxi

K
T

√
H

)
·xi

V ·Wi
O + ti,

ti+1 = frelu
(
ti
Out ·W

i
1
)
·Wi

2 + ti
Out.

The decoding phase continues until a specified condition is
met, such as emitting an end-of-sequence (<eos>) token or
reaching a desired output sequence length.

LLM adaption. Adapting LLMs in a parameter-efficient
manner is a popular approach to enhancing their performance
for domain-specific tasks or customizing the model inference
results to align with human intents [17, 18]. One notable
approach is Low-Rank Adaptation or LoRA [9], which intro-
duces an adapter to modify the intermediate LLM inference
results while keeping the original LLM parameters unchanged.
Specifically, given a pre-trained weight matrix W ∈ RH1×H2 ,
an adapter consists of two low-rank matrices A ∈ RH1×r and
B ∈ Rr×H2 , where r is the LoRA rank. LoRA adapts this
weight matrix to W′ = W+AB. Let y be the original out-
put of this layer given by y = xW. With LoRA adaption, the
updated computation becomes

y′ = xW+xAB = xW′. (1)

The LoRA adapter is highly efficient in terms of parameter
space because the rank r× (H1 +H2)≪ H1×H2. Therefore,
LoRA adaption is widely applied in the attention modules
of transformer-based LLMs [9, 23]. When deploying LoRA-
adapted models for inference, the computation load required
by the LoRA adapter (xAB) is orders of magnitude smaller
than that of the original weights xW in terms of floating-point
operations, if we compute these two parts separately.

2.2 Multi-Tenant LoRA Serving

The need of LLM-multiplexing. A naive way to serve a
LoRA adapter [9] is to merge its weights into the weights of

Time

R1

GPU

<EOS>applean

aisHePreLoad

areHowPreLoad

Dec 2,3Dec 1,2,3Pre 3Load 3Dec 1,2Pre 2Load 2Dec 1

R2

R3

R2 arrives R3 arrives

Figure 2: Continuous batching in which the decoding phase
(Dec) is preempted to perform prompt processing upon a
request arrival, which involves loading the requested LoRA
adapter (Load) and prefilling (Pre).

the base LLM, which introduces no additional computational
overhead when deploying the adapted model for inference.
However, this approach does not scale to multi-tenant LoRA
serving: because one base model can only merge with one
LoRA adapter at a time, serving n different LoRA models
requires duplicating n copies of the base LLM, wasting GPU
memory and missing opportunities for batch inference [11].

In practice, many LoRA models are developed based on
common LLM series (e.g., Llama2 [28]), and multiple LoRA
models originating from the same LLM can multiplex that
LLM for GPU-efficient inference. This can be achieved by
computing LoRA adaption xAB on the fly and adding this
result back to the intermediate results xW before subse-
quent computations. As described in §2.1, the computation of
xAB is lightweight, and multiple LoRA computations can be
batched during inference.

Continuous batching. Existing LLM serving systems employ
a continuous batching strategy optimized for LLM’s iterative
auto-regressive generation process [10, 11, 16, 31]. Continu-
ous batching operates at the iteration level, where completed
requests are immediately removed from the running batch
after each iteration to make room for new requests to join.
This allows a new request to be incorporated in just one iter-
ation without waiting for the entire batch inference to com-
plete. Continuous batching significantly improves the token
generation throughput while minimizing the request queuing
delays. Fig. 2 illustrates this batching process used in existing
systems [10, 11, 16], where the decoding and prefill phases
interleave as new requests arrive. Upon a request’s arrival, the
decoding phase (Dec) is preempted to perform prompt pro-
cessing, which involves loading the requested LoRA adapter
(Load) and prefilling (Pre). Once completed, the new requests
join the running batch, and the system combines them together
to continue the decoding process.

2.3 Challenges
However, simply enabling LLM-multiplexing and continuous
batching is insufficient to achieve optimal performance for
multi-tenant LoRA serving, as it results in two challenges.

C1: High cold-start overhead. To save GPU memory, exist-

3

0.00 0.25 0.50
Proportion of Cold-Start

0.0

0.5

1.0
CD

F

RPS=3
RPS=6
RPS=9

8 32 64 128
LoRA Ranks

0

20

40

La
te

nc
y

(m
s)

4.9 11.8
20.6

50.7

Figure 3: Left: The distribution of cold-start overhead during
the entire token generation of each request. Right: The cold-
start latency of loading a single LoRA adapter of different
rank onto GPU. The adapter applies to the Wq,Wk,Wv of a
Llama2-7B on an A10 GPU instance.

ing systems only cache the base LLM on GPU while keeping
all its LoRA adapters in host memory [1, 23]. When a new
request arrives, the system fetches the corresponding adapter
from the host to the GPU, leading to an adapter loading phase
that must complete before the prefill phase begins (Fig. 2).
This results in a severe cold-start problem, where loading an
adapter from the host to a GPU can take between a few to tens
of milliseconds, depending on the adapter size (Fig. 3-Right).
Cold-start degrades the service responsiveness, measured by
time-to-first-token [4, 23]. Moreover, under continuous batch-
ing, each time a new request arrives, the decoding phase of
in-flight requests is blocked until the new arrival’s prefill
phase completes (Fig. 2). As new requests keep arriving, their
cold-start overhead cumulatively delays the token generation
of an in-flight request (as shown in Fig. 2, where R1 expe-
riences two cold-starts due to the arrivals of R2 and R3).
We empirically validate this issue by multiplexing a Llama2-
7B model with a group of 512 LoRA adapters (rank=64).
These adapters have skewed popularity (Fig. 12) following
the Microsoft Azure Function (MAF) trace [21]. We config-
ured Poisson request arrivals with various aggregate loads.
Fig. 3-Left shows the proportion distribution of the cold-start
overhead, which, on average, accounts for 10%, 16%, and
20% of the entire request serving time when the aggregate
load is 3, 6, and 9 requests per second, respectively.

To avoid cold-start, a simple approach is to pre-cache all
LoRA models in GPU. However, this approach is expensive:
a single rank-64 adapter that adapts three attention weights
WQ,WK ,WV of a Llama2-7B model [28] demands approxi-
mately 100 MiB, equivalent to the size of a KV cache of 200
tokens. S-LoRA [23] suggests using predictive pre-fetching,
yet without providing details. Given that inference requests
to individual models are highly bursty [8, 33], frequent mis-
predictions and cold-starts are expected. Punica [1] uses asyn-
chronous loading to avoid blocking subsequent decoding itera-
tions. However, new requests still need to undergo the adapter
loading phase, leading to the extended time-to-first-token [1].

C2: Request scheduling for heterogeneous LoRA serving.
In multi-tenant LoRA serving, users often request to use het-
erogeneous LoRA adapters with varying ranks [23]. These
heterogeneous adapters can be batched together to multiplex

Maxi(rank(i))

20 40 60 Batc
hS

ize

0
10

20
30

Ti
m

e
Pe

r T
ok

en
 (m

s)

32
34
36
38

Avgi(rank(i))

0 20 40 60 Batc
hS

ize

0
10

20
30

Ti
m

e
Pe

r T
ok

en
 (m

s)

35

40

Figure 4: The varying decoding latency of batching hetero-
geneous LoRA adapters. Left: The performance of Punica’s
BGMV [1] is determined by the batch size and the maximum
rank. Right: The performance of S-LoRA’s MBGMV [23] de-
pends on the batch size and the average rank in the batch.

New Request, Rank64

Instance 1

24×Rank32
Punica Lat=34.8ms
S-LoRA Lat=35.3ms

Instance 2

16×Rank64
Punica Lat=35.8ms
S-LoRA Lat=35.9ms

+

Instance 1

24×Rank32
Lat=34.8ms

Instance 2

17×Rank64
Lat=35.9ms

Instance 1

25×Rank64
Lat=38.0ms

Instance 2

16×Rank64
Lat=35.8ms

Schedule to Instance 1 Schedule to Instance 2

Instance 1

24×Rank32
Lat=35.3ms

Instance 2

17×Rank64
Lat=37.1ms

Instance 1

24×Rank32
1×Rank64
Lat=35.9ms

Instance 2

16×Rank64
Lat=35.9ms

BGMV

MBGMV

Figure 5: An example of rank-aware LoRA scheduling with a
decoding latency SLO of 36 ms. With Punica’s BGMV, schedul-
ing the new request to Instance 2 meets the SLO; with S-
LoRA’s MBGMV, scheduling it to Instance 1 preserves the SLO.

one base LLM using specialized kernel implementations, such
as the Batched Gather Matrix-Vector Multiplication (BGMV)
kernel in Punica [1] or the Multi-size Batched Gather Matrix-
Vector Multiplication (MBGMV) kernel in S-LoRA [23]. Specif-
ically, when batching a set of heterogeneous LoRA adapters,
BGMV pads adapters of smaller ranks to the highest rank to per-
form batch operations, while MBGMV does not use padding [23].
As a result, BGMV’s performance is determined by the maxi-
mum rank in the batch, whereas MBGMV’s performance depends
on the average rank. We measure the decoding latency of
batch serving heterogeneous LoRA adapters using these two
kernels with various batch configurations, and the results are
depicted in Fig. 4. We observe significant performance varia-
tions when batching different sets of heterogeneous adapters.
This highlights the need for intelligent request scheduling that
takes into account the rank heterogeneity and the batching
performance of a specific kernel implementation.

To illustrate this point, we refer to a toy example shown in
Fig. 5. In this example, Instance 1 is handling 24 requests with
LoRA rank=32, while Instance 2 is running 16 requests with

4

Local LoRA
Repository

LLM Inference Server

Request Queue

Scheduler

Global
LoRA

Registry

LoRA
(GPU)

Shared
Memory

Base LLM
(GPU)

LoRA
(CPU)

Requests Streaming
Outputs

Figure 6: An architecture overview of CARASERVE.

rank=64. Using Punica’s BGMV kernel, the decoding latencies
for Instances 1 and 2 are 34.8 ms and 35.8 ms, respectively.
With S-LoRA’s MBGMV, the latencies are 35.3 ms for Instance
1 and 35.9 ms for Instance 2. Assume a decoding latency
SLO of 36 ms, and we need to determine the optimal sched-
ule for a new incoming request with rank=64. With the BGMV
kernel, assigning this new request to Instance 2 would meet
the SLO, while sending it to Instance 1 would increase the
maximum rank of the batched requests to 64, resulting in an
SLO violation due to the processing of 25 higher-rank re-
quests on Instance 1. Things become different when it comes
to S-LoRA’s MBGMV kernel, as the latency is proportional to
the total LoRA ranks within a batch. Since Instance 2 already
has a higher sum of batch ranks, its latency is higher than
that of Instance 1. Therefore, scheduling the new request to
Instance 1 preserves the SLO, while routing it to Instance 2
would lead to an SLO violation.

Despite the significant impact of request scheduling, exist-
ing LoRA serving systems [1, 23] provide no optimization to
it, resulting in significant delays that violate SLOs (§7.5).

3 CARASERVE Overview

In this section, we provide a high-level overview of
CARASERVE, a LoRA serving system that efficiently tackles
the two challenges mentioned earlier. CARASERVE uses a
CPU-assisted approach to hide the long cold-start latency. It
uses CPUs to simultaneously execute the requested LoRA
adapter while loading it onto the GPU, effectively overlapping
the adapter loading (cold-start overhead) with the prefill com-
putation (§4). CARASERVE also optimizes the scheduling
of inference requests to heterogeneous LoRA adapters using
a rank-aware scheduling algorithm, significantly enhancing
cluster performance and SLO compliance (§5). Fig. 6 illus-
trates the system architecture, which consists of a cluster of
LLM inference servers, a scheduler, and a global LoRA reg-
istry.

LLM inference server. Each LLM inference server maintains
a long-running service of the base LLM on the GPU. It also
stores a set of heterogeneous LoRA adapters in an in-memory
local LoRA repository. During inference, the server coordi-
nates LoRA computations on the CPU and GPU to avoid
cold-start. Specifically, it adapts the BGMV kernel from [1] to
perform LoRA computation efficiently on the GPU. For CPU-
based LoRA execution, it utilizes three techniques to enhance
its efficiency: asynchronous invocation, shared memory, and
profiling-guided parallelization, which we elaborate in §4.

Scheduler. The scheduler receives user requests and routes
them to the appropriate servers to meet the SLOs. To guide the
scheduling decision, it uses a performance model to predict
the latency cost by jointly considering the rank heterogeneity
of the serving batch and the underlying kernel implementation,
which we explain in §5.

Global LoRA registry. The global LoRA registry stores the
metadata of all LoRA adapters, such as the LoRA ranks, the
path to their weights file, etc.

Workflow. As illustrated in Fig. 6, new requests arrive at the
scheduler (1), which uses the rank-aware scheduling algo-
rithm described in §5 to route them to appropriate inference
servers (2). Following the continuous batching strategy [31],
the LLM inference server fetches requests from the request
queue (3) and provides generative inference services using
the corresponding LoRA adapters (4). New tokens generated
by the LLM are then streamed back to the users (5).

4 CPU-Assisted LoRA Serving

In this section, we present the design and implementation of
CPU-assisted LoRA serving. We begin by describing LoRA
computation on GPU and CPU and discussing the challenges
of efficiently combining the two executions to address the
cold-start problem (§4.1). We then present three optimization
techniques that address these challenges (§4.2).

4.1 LoRA Computation on GPU and CPU
A parameter-efficient adapter, LoRA requires lightweight
computation and can run on either GPU or CPU.

GPU LoRA. As the base LLM is “pinned” on GPU, running
LoRA adapters on the same device saves the communication
overhead and is usually more efficient than running them on
CPU. To maximize the token throughput, LoRA computa-
tions (i.e., xAB in Eq. (1)) are batched in each attention layer
during base LLM inference. This can be achieved with a spe-
cialized CUDA operator [1, 23]. In CARASERVE, we adapt
the Batched Gather Matrix-Vector Multiplication (BGMV) op-
erator [1], which parallelizes the LoRA weight gathering and
computation for efficient execution. The LoRA output is then
added to the base output in the self-attention computation,

5

Embeddings

Norm

Self-Attention

Norm & FFN

WK WVWQ

x

Next Block

LoRA on
GPU?

GPU LoRA
Yes

No

Shared
Memory

Base LLM
Process

CPU LoRA
CPU LoRA
CPU LoRA
CPU LoRA

Figure 7: Illustration of coordinated LoRA computation on
GPU and CPU per transformer block’s attention layer.

following in Eq. (1). For an efficient implementation, we in-
corporate the operators of GPU LoRA computation into the
base LLM inference process, as shown in Fig. 7.

CPU LoRA. LoRA computation can also be executed us-
ing the CPU, which requires layer-wise synchronization with
the base LLM inference running on the GPU. Specifically,
at each attention layer, the base inference process transfers
the input tensor x in Eq. (1) from the GPU device memory
to the host memory (Fig. 7). The CPU LoRA process then
performs computation and transfers the result xAB back to
the GPU device. In the meantime, the base inference process
proceeds to compute xW, which is finally adapted with the re-
ceived LoRA output following Eq. (1). Although CPU LoRA
requires synchronization, it can start immediately because the
LoRA weights are already in memory. We hence utilize it to
address the cold-start problem that arises in GPU LoRA (C1
in §2.3).

Mitigating GPU cold-start with CPU assistance. As illus-
trated in Fig. 1, when a new request arrives and the correspond-
ing adapter is not available on the GPU, the server fetches
it from host memory and, in the meantime, starts its prefill
computation using the CPU. Once the adapter is fully loaded,
the GPU LoRA takes over, finishing the remaining prefill
computation not done by the CPU, if any, and the subsequent
decoding process. Fig. 7 illustrates how CPU and GPU LoRA
computations are coordinated in our design, where we run
CPU LoRA adapters as isolated, concurrent processes for
resource/failure isolation and improved performance.

Challenges. Though hosting LoRA computation in isolated
CPU processes effectively addresses the cold-start problem,
it poses three challenges to system implementation. First,
running LoRA in CPU processes requires layer-wise synchro-
nization between the GPU-based LLM inference to ensure
data validity. Second, frequent triggering of LoRA computa-
tion in each attention layer leads to high invocation overhead,
such as inter-process data transfer. Third, using CPU to com-
pute adaptation can be slow given its limited parallelization
capability, especially when the input prompt is long.

F1

F2

F2

F4

F1

F4

Synchronization Time Saved

Native

CaraServe F’2

F4

F4

CPU

CPU

GPU

GPU

F’3…

…

F1 F4 CUDA Kernel
F2 CUDA MemCpy

F3 Signal

F3

New OpsF’2 F’3

F’2 F’3

Figure 8: Execution timeline of Native LoRA Invocation and
LoRA Invocation with CARASERVE’s operator in base LLM
process. CPU LoRA is ignored for simplicity.

4.2 Efficient GPU-CPU LoRA Coordination

In this subsection, we tackle the system challenges mentioned
earlier with three optimization techniques.

Sync-free CPU LoRA invocation. Most LLM serving sys-
tems achieve low latency through asynchronous GPU compu-
tation in PyTorch-like frameworks [10, 11, 16, 23, 28]. How-
ever, adapter serving requires careful coordination between
base LLM inference running on GPU and LoRA invocation
running on CPU to ensure correctness and good performance.

In native PyTorch, having the base LLM process invoke
CPU LoRA requires explicit synchronization, which blocks
subsequent kernels from launching. To illustrate this prob-
lem, we refer to Fig. 8-Top, which depicts the native PyTorch
invocation timeline from the base LLM process’s perspec-
tive.* The CUDA kernel F1 computes the input matrix x. In
the meantime, the base LLM process issues F2, a CUDA
MemCpy kernel, to transfer the input matrix to the host mem-
ory for CPU LoRA’s access. Once the data transfer com-
pletes, the base process uses a signaling operator F3 to notify
CPU LoRA processes to compute xAB. It then launches the
next CUDA kernel F4 following F1. This implementation re-
quires explicit synchronization (shown as a yellow block with
slashes) to ensure that the memory copy (F2) completes be-
fore the signaling (F3). However, this synchronization blocks
the subsequent F4 from launching, resulting in significant
inference delay and GPU underutilization.

To address this issue, we introduce a customized operator
that eliminates explicit synchronization by fusing an asyn-
chronous MemCpy kernel with a signaling kernel. As shown in
Fig. 8-Bottom, instead of relying on synchronization, we fuse
F2 and F3 into an asynchronous CUDA kernel [F ′2,F

′
3], where

F ′2 performs asynchronous MemCpy and F ′3 asynchronously
signals the intended CPU LoRA processes through shared
memory. As a result, the fused kernel [F ′2,F

′
3] can be added to

the GPU device queue without waiting for the completion of
F1. Note that data validity is preserved in this case because
CUDA device queue follows a sequential, strict first-in-first-

*Note that CPU LoRA processes (i.e., CPU calculation for xAB) are not
depicted in Fig. 8 because they are identical in both implementations.

6

out execution ordering. Since the new operator requires no
explicit synchronization, subsequent base model kernels, such
as F4, can launch without being blocked, eliminating unnec-
essary synchronization overhead. Our experiments in §7.4
demonstrate that our kernel can reduce the latency of each
prefill iteration by 16% compared with PyTorch’s native im-
plementation.

Shared memory data transfer. Transferring data and sig-
nals between the base LLM process and the isolated CPU
LoRA processes requires inter-process communication (IPC).
This is a one-to-N communication involving one base LLM
inference process and multiple CPU LoRA processes. (We
explain why multiple CPU LoRA processes later.) We utilize
shared memory for fast inter-process data transfer, eliminat-
ing the need for data copying and serialization (Fig. 7). After
the base LLM process executes our customized operator (see
Fig. 8), the CPU LoRA processes will soon be signaled to
start reading the input matrix x from the shared memory and
perform the computation xAB. They then write xAB back to
the shared memory and notify the LLM inference process to
incorporate the adaptation results (Eq. (1)). Micro-benchmark
evaluations (§7.4) demonstrate that the use of shared memory
reduces data transfer overhead to less than 1 ms (Fig. 17), sub-
stantially outperforming the message passing IPC employed
by existing LLM frameworks [16].

Profiling-guided LoRA parallelization. Given that the CPU
has lower computing power and limited parallelization capa-
bility compared to the GPU, performing LoRA adaptation
using a single CPU is not scalable. Therefore, we propose a
profiling-guided parallelization scheme to accelerate LoRA
adaptation using multiple CPU cores. As discussed in §2.1,
the adaptation computation is xAB, where x ∈ RB×L×H is
the input matrix for B requests with L tokens, totaling B×L
tokens. We first profile the performance achieved by a sin-
gle core under varying workloads (Fig. 18-Left) and set the
maximum workload for a single CPU, which is the maximum
number of tokens a CPU core can handle for computation.
For example, if one core can handle c tokens, we allocate ⌈L

c ⌉
cores for computing the adaptation results of each request with
weight matrix W. Each core is dedicated to an isolated CPU
process to avoid interference. Specifically, the CPU process
reads a slice of x from the shared memory region, performs
the computation, writes the results back to the shared memory,
and notifies the base LLM process accordingly. Compared to
PyTorch’s native multi-threading module [7], this approach
achieves 1.7× speedup when using 8 CPUs for the same
workload (Fig. 18-Right).

Putting it altogether, our design, as demonstrated in §7.2,
can accelerate the request serving by 1.4× on average.

0 1000 2000
Maxi (rank(i)) × BatchSize

32.5

35.0

37.5

La
te

nc
y

(m
s) Fitted line

Profiled data

0 1000 2000
Sumi (rank(i))

35

40

Figure 9: Performance models for BGMV (Left) and MBGMV
(Right) kernels. Both linear regression models achieve a high
coefficient of determination (R2) of 0.96.

5 Rank-Aware Scheduling

In a multi-tenant LoRA serving system, user requests can
trigger the use of heterogeneous LoRA adapters with varying
ranks. As discussed in §2.3, the heterogeneity in adapter ranks
directly affects the performance of multi-tenant LoRA serving
systems. Therefore, the scheduling strategy for handling these
requests is crucial for enhancing system efficiency (C2): a sub-
optimal strategy can drive the adapter heterogeneity in a server
to a non-ideal setting that slows down token generation for
both new and ongoing requests. To address this, an effective
scheduler needs to be aware of the heterogeneity-performance
model, and make optimal scheduling decisions to achieve high
SLO attainment.

Performance modeling. The goal of performance model-
ing is to establish a correlation between rank heterogene-
ity in a batch of LoRA requests and its impact on serving
performance. This enables the scheduler to make informed
scheduling decisions to meet SLOs. Under continuous batch-
ing (§2.2), when new requests are routed to a server, the
server’s running batch size increases, and the batch’s rank
heterogeneity changes as well. To efficiently serve a batch
of LoRA requests, existing works [1, 23] provide two CUDA
kernels for computing the adaption xAB: the padding-based
BGMV and padding-free MBGMV (§2). We characterize these ker-
nels using NVIDIA Nsight Compute [6] and observe that both
kernels consume over 70% of the GPU memory bandwidth,
suggesting that their performance is bounded by the GPU
memory bandwidth.

Based on the characterization of kernels, we develop
generic performance models to predict the prefill and de-
coding latency of a specific batch of heterogeneous adapters.
These models are created through lightweight serving per-
formance profiling, involving varying batch sizes and hetero-
geneous adapters on a specific GPU. We present the perfor-
mance models tailored for both BGMV [1] and MBGMV [23]. For
the padding-based BGMV kernel, where lower-ranked LoRAs
require padding to match the highest rank for the BGMV oper-
ation, we observe that the serving performance of decoding
latency is almost linear to the product of batch size and the
maximum rank encountered in the batch (see Fig.9-Left). On
the other hand, S-LoRA’s MBGMV [23] modifies the BGMV ker-
nel to eliminate padding, improving performance with highly

7

heterogeneous LoRA ranks but introducing additional perfor-
mance overhead for computing homogeneous ranks. Through
profiling, we find that under MBGMV, the serving performance
scales linearly with the sum of LoRA ranks in a batch of
heterogeneous adapters (Fig. 9-Right). Denoting the adapter
rank of request i as rank(i), we present performance models
for these two kernels on a batch of requests S as two linear
functions with parameters α and β, inspired by [13]:

PERFBGMV(S) = αB · |S | ·Maxi∈S rank(i)+βB
PERFMBGMV(S) = αM ·Sumi∈S rank(i)+βM

As depicted in Fig. 9, our linear performance models ac-
curately fit the profiled data. Both models achieve a high
coefficient of determination (R2) of 0.96, in that R2 = 1 indi-
cates a perfect fit of the linear model to the data.

Scheduling policy. Using the established performance mod-
els, we develop a rank-aware scheduling algorithm (Algo. 1)
for heterogeneous LoRA requests. Upon receiving a new
request, the scheduler gathers information about ongoing re-
quests from all available LLM inference servers. The sched-
uler identifies potential candidate servers by matching the
base LLM, adapter, and GPU memory availability. If mul-
tiple candidates are found, the scheduler calculates a total
cost score for each candidate server based on the performance
model. This cost score measures the impact of the new re-
quests on the performance of the server’s ongoing requests. If
serving the new request would cause a violation of the SLO,
the cost score is assigned a large penalty. The scheduler then
selects the server with the minimum cost score to handle the
new request. In our evaluation (§7.5), this rank-aware schedul-
ing algorithm achieves a high SLO attainment of up to 99%,
substantially outperforming other baseline strategies.

6 Implementation

LLM inference server. We implemented CARASERVE’s
LLM Inference Server on top of LightLLM [16], an LLM
serving framework based on PyTorch [19] and Triton [27].
Specifically, we extended its Llama2 inference module to
incorporate our LoRA adapters. This allows for easy integra-
tion with different LLMs and other popular LLM inference
frameworks such as vLLM [11]. We implemented GPU LoRA
adapters by adapting the BGMV kernels in Punica [1]. Regard-
ing CPU LoRA, we implemented a custom CUDA kernel
(described in §4.2) as a PyTorch Extension using PyBind11,
and built CPU LoRA on top of PyTorch. Each CPU LoRA
adapter runs as an isolated process, binding to one CPU core
using the numactl command. To enable efficient batch in-
ference, we utilize the request queue in LightLLM, which
facilitates the continuous batching mechanism [11, 31].

Support model parallelism. We employ tensor parallel tech-
niques [25] to support base LLMs that require multiple GPU
devices. Tensor parallelism involves partitioning a weight

Algorithm 1: Rank-aware Scheduling Policy
Input: Performance models for Prefill and Decoding: PrePer f (·),

DecPer f (·); average response length: avg_resp_len
1 while True do
2 Request i arrives;
3 candidates← available LLM inference servers
4 for instance in candidates do
5 running_batch, queue = instance.GetStats()
6 cost = CalcCost(i, running_batch, queue)
7 requests = len(running_batch) + len(queue)
8 instance.total_cost = cost * requests
9 end

10 best = min(candidates, key=lambda x: x.total_cost)
11 best.serve(i)
12 end
13 Function CalcCost(req, running_batch, queue):
14 exists = running_batch + queue
15 # calculate additional prefilling time
16 ∆pre f ill = PrePer f (queue + req) - PrePer f (queue)
17 # calculate additional decoding time per token
18 ∆decode = DecPer f (exists + req) - DecPer f (exists)
19 cost_score = (∆pre f ill / avg_resp_len) + ∆decode
20 if DecPer f (exists + req) > SLO then
21 cost_score += penalty_score
22 end
23 return cost_score

matrix into multiple chunks along a specific dimension. Each
GPU device holds only one chunk of the entire weight matrix
and performs a portion of the computation in parallel [12].
Tensor parallelism may require communication between the
participating GPU devices for output merging. To enable
tensor parallelism for LoRA computation, CARASERVE parti-
tions the LoRA adapter weights (B in Eq.(1)) using the same
strategy as that of the base LLMs. It performs the computa-
tion and incorporates the adaptation results into the inference
intermediates in-place, causing no extra communication over-
head.

Scheduler & global LoRA registry. In our prototype, we
implemented the scheduler using Python Flask. It serves as
the frontend that receives requests and routes them to LLM
inference servers based on Algo. 1. For the global LoRA
registry, we utilized SQLite in our prototype.

7 Evaluation

We evaluate CARASERVE using both synthetic and scaled pro-
duction workloads [21] in terms of the LLM inference server’s
serving efficiency (§4) and the scheduler performance across
multiple servers (§5). Our evaluation highlights include:

• CARASERVE achieves efficient multi-tenant LoRA serving
on both synthetic and real-world workloads, outperforming
strong state-of-the-art baselines, e.g., S-LoRA [23] (§7.2).

• CARASERVE is compatible with model parallelism to sup-
port LLMs that require multiple GPUs (§7.3).

8

Base Model Hidden Size Layers GPU Config.
Llama2-7B 4096 32 A10 (24G)
Llama2-13B 5120 40 2 × A10 (24G)
Llama2-70B 8192 80 4 × A100 (80G)

Table 2: Model and GPU configurations.

• CARASERVE’s optimizations in CPU LoRA execution are
effectively illustrated by various micro-benchmarks (§7.4).

• CARASERVE’s scheduler achieves high SLO attainment
and improves the performance as a cloud service (§7.5).

7.1 Experimental Setup

Model and server configurations. We adopt Llama2 [28]
models with 7B, 13B and 70B parameters for evaluation (de-
tails in Tab. 2), where LoRA adapters are applied to WQ, WK ,
and WV (§2) in LLM’s attention layers following the standard
settings [5, 9, 23]*.

Metrics. We use the following metrics in evaluation, which
are considered essential in user-facing LLM serving [4, 23].
• Time to first token. It measures how quickly users start get-

ting the model’s output after entering their prompts. Low
waiting times for a response are essential in real-time in-
teractions. This metric reflects the time required to process
the prompt and then generate the first output token.

• Time per token. It measures the time on average to generate
an output token for each user. This metric corresponds with
the perceived "speed" of the model.

• Request latency. It measures the overall time it takes for
the model to generate the full response for a request.

Baselines. We consider the following baselines.
• CACHED represents an Oracle method where all required

LoRA adapters are pre-cached in unlimited GPU memory.
It has no adapter loading overhead, thus achieving perfor-
mance upper bound.

• ONDMD loads LoRA adapters on demand. It will suffer
from the cold-start overhead if the required LoRA adapters
are not on GPUs.

• S-LORA [23] represents a state-of-the-art multi-tenant
LoRA serving framework, which is also built on top of
LightLLM [16]. It loads LoRA adapters on demand and
uses an adapted CUDA kernel for GPU LoRA computation.

Note that we equip baselines other than S-LoRA with the
BGMV kernel [1] to perform GPU LoRA computation for a fair
comparison in the single GPU case.

Workloads. We use both synthetic and scaled production
workloads in our evaluation.

*Following the setting in [1,23], we use dummy weights for LoRA models,
which do not affect system performance.

0 2
Time to

first token (s)

0.00
0.50
0.95

CD
F

Cached OnDmd S-LoRA CaraServe

0.0 0.5
Time per
token (s)

0 10
Request

latency (s)

Figure 10: End-to-end results with Llama2-7B.

0 25 50
Latency (ms)

CaraServe
S-LoRA
OnDmd
Cached

0
47

21 64
22 63

40
LoRA Load Prefill

0 20 40
Latency (ms)

37
39
38

37
Decode

Figure 11: Prefill and decoding latency at LLM inference
server. CARASERVE hides the LoRA adapter loading over-
head by overlapping loading and CPU computation.

• Synthetic workload. The aggregate request traffic to an
LLM server follows Poisson processes with varying in-
tensities, widely used in approximating simulated invoca-
tions [1, 33]. Similar to [1], each request targets a distinct
adapter and hence undergoes the adapter loading phase.

• Scaled production workload. We use the MAF trace [21]
to generate a scaled production workload widely used to
emulate model serving workloads [8, 15, 20, 33]. The trace
contains invocation patterns of different functions, and we
regard each function as one LoRA adapter. We randomly
group the LoRA adapters. Each LLM inference server hosts
a group of adapters and receives the aggregated request traf-
fic from all the LoRA adapters it hosts. Within a group,
adapters have varying probabilities of being invoked, pro-
portional to their invocation frequency in the original trace.
Fig. 12 shows the invocation probability density function.

For both workloads, we set each request’s input prompt and
output length according to the Alpaca dataset [11, 26], which
contains input and output texts of real LLM services. Like
S-LoRA [23], we run each workload for 5 minutes.

7.2 End-to-End Performance on a Single GPU
We first evaluate CARASERVE on the synthetic and scaled
production workloads on an A10 GPU serving Llama2-7B.

Synthetic workloads. We generate traces using a Poisson
process with an aggregate RPS = 9 and set the LoRA adapter
rank to 64. We measure the performance of each baseline
using the metrics discussed in §7.1. Fig. 10 plots the CDFs
of time metrics, demonstrating that CARASERVE can rival
CACHED and outperform ONDMD/S-LORA.

Compared to the CACHED baseline, ONDMD/S-LORA
introduce prohibitively high overhead, increasing time to

9

0 20 40 60 80 100
LoRA Adapter ID

0.00

0.10

Pr
ob

ab
ilit

y 128
256
512

500 520

Figure 12: LoRA Invocation Probability Mass function. X-
axis: ID sorted by invocation probability in descending order.

0 2
0.00

0.50

0.95

CD
F

0.1 0.4 0 10

0.0 0.5
Time to

First Token (s)

0.00

0.50

0.95

CD
F

0.1 0.3
Time per
Token (s)

0 5
Request

Latency (s)

3
0.00

0.50

0.95

Cached OnDmd S-LoRA CaraServe

Figure 13: Sensitivity analysis of different Ranks and Traces.
Top: RPS = 9,rank = 32; Bottom: RPS = 6,rank = 64.

first token by 412%/451%, time per token by 71%/78%,
and request latency by 50%/50% on average. However,
CARASERVE rivals the performance of CACHED by intro-
ducing tolerable overheads. On average, CARASERVE re-
duces the time to the first token latency overhead to 22%,
time per token overhead to 11%, and the end-to-end request
latency overhead to 9%. Fig. 11 explains CARASERVE’s ad-
vantage from the LLM inference server’s side. We can see
that the latency of each decoding iteration is similar across all
baselines, while ONDMD/S-LORA have a long prefill itera-
tion due to the adapter loading overhead. On the other hand,
CARASERVE leverages the CPU-assisted design (§4) to avoid
the adapter loading overhead in prefill iteration.

Sensitivity Analysis. Two factors affect the benefits
achieved by CARASERVE (§2). The first is LoRA rank —
smaller rank leads to shorter loading latency. We evaluate
each baseline with adapter rank = 32 and aggregate RPS = 9.
Fig. 13-Top shows that although smaller LoRA ranks de-
crease overhead, ONDMD/S-LORA introduces a considerable
amount of overhead compared to the CACHED: 88%/126%
for time to first token, 28%/36% for time per token, and
25%/31% for request latency on average. CARASERVE out-
performs by introducing minimal overhead: 36%,5%,6%
for the three metrics respectively. The second factor is the
workload, which determines the frequency of LoRA load-
ing. Higher request traffic results in increasing prefill phases

128 256 512
0.08
0.10
0.12
0.14

La
te

nc
y

(s
)

Time to first token
Cached OnDmd S-LoRA CaraServe

128 256 512
Adapter Group Sizes

0.04

0.06

Time per token

128 256 512
2

3
Request latency

Figure 14: Baseline performance with varying number of
LoRA adapters under MAF workloads.

0 50.00
0.50
0.95

CD
F

0 2 0 20

0 25
Time to

First Token (s)

0.00
0.50
0.95

CD
F

0 10
Time Per
Token (s)

0 50
Request

Latency (s)

Cached OnDmd CaraServe

Figure 15: Evaluation on Llama2-13B (Top) and Llama2-70B
(Bottom) models with RPS = 6,rank = 64.

and adapter loading (§2.3). We evaluate each baseline with
a lighter traffic with aggregate RPS = 6 and the rank = 64.
Similar to reducing LoRA rank, reducing workload decreases
the overheads of ONDMD/S-LORA to 42%/41%, 25%/25%,
24%/20% for the three metrics respectively (Fig. 13-Bottom).
CARASERVE maintains superior with minimal overhead:
1%,10%,9% for the three metrics, respectively.

Scaled production workloads. We next evaluate
CARASERVE on a production workload based on the
MAF trace [21]. Fig. 12 illustrates the skewed distribution
of function popularity. We evaluate each baseline with
an increasing number of LoRAs and their workloads in a
single LLM inference server. More LoRA adapters mean
heavier request loads, and each new request is more likely
to invoke a new LoRA adapter that needs to be loaded onto
GPU on demand (Fig. 12). The average aggregate RPS for
128/256/512 adapters is 1.5/3.6/7.7, respectively, scaled
from the original trace.

We measure each request’s serving performance using the
metrics defined in §7.1. Fig. 14 presents the results. When 128
LoRA adapters are in a single server, the impact of cold-start
is negligible because the invocation traffic is low, and most
new requests do not require adapter loading. Compared to
CACHED, ONDMD/S-LORA/CARASERVE increase time to
first token by 31%/22%/9%, time per token by 8%/3%/3%,
and request latency by 6%/3%/2% on average.

However, as the number of LoRA adapters increases to
512, adapter loading introduces prohibitively high overhead,
hindering a system from scaling to host a large number of
LoRA adapters. In comparison to the CACHED baseline,

10

75
100
125
150

La
te

nc
y

(m
s)

88
108

134 139

85
96

112 121
Native
CaraServe

32 64 96 128
Total Tokens

0

Figure 16: Prefill performance of different kernels on Llama2-
7B model. Native: PyTorch default kernels. CARASERVE:
Implementation with our optimized kernels (§4.2).

1 2 3 4 5
Number of Client Processes

0

2

La
te

nc
y

(m
s)

1.0 1.3 1.6
2.1 2.4

0.6 0.7 0.9 1.0 1.0

Socket(Other)
Socket(IPC Data)

SHM(Other)
SHM(IPC Data)

Figure 17: CPU LoRA computation time. Each process re-
ceives data of 16 tokens. Socket: Domain socket for inter-
process communication (IPC). SHM: Shared memory for IPC.
IPC Data: Time for transfering data to another process via
IPC. Other: Time for all other operations.

ONDMD/S-LORA/CARASERVE increase first token latency
by 39%/39%/7%, time per token by 34%/32%/7%, and re-
quest latency by 31%/31%/8% on average. These results sug-
gest that the cold-start issue prevents ONDMD/S-LORA from
scaling to accommodate a large number of LoRA adapters.
Nevertheless, CARASERVE performs better than its competi-
tors by rivaling the performance of the CACHED baseline.

7.3 End-to-End Performance on Multi-GPUs

We evaluate each baseline with Llama2-13B and Llama2-70B
with two A10 GPUs and four A100 GPUs, respectively. We
compare CARASERVE with CACHED and ONDMD since ex-
isting works [1,23] have not released their code in multi-GPU
settings. For the Llama2-70B model, we adopt the torch.bmm
operator instead of the BGMV kernel from Punica [1], since it
does not support the key/value matrix shape of the Llama2-
70B model. For both models, we use a synthetic Poisson
arrival rate with RPS = 6 and prompts from the Alpaca
dataset [26].

Fig. 15 plots the CDFs of requests’ serving performance
regarding the three metrics. CARASERVE gains a much better
performance than the on-demand loading methods. On aver-
age, CARASERVE achieves a 20.2%/18.5% speedup on the
end-to-end request latency for Llama2-13B and Llama2-70B
models. Compared with ONDMD, CARASERVE reduces its
cold-start overhead by over 50%.

1 4 16 64 128
Number of Tokens

0

50

100

La
te

nc
y

(m
s)

2 4 8
Parallelism Degree

84 77
5358 45

31

Native
CaraServe

Figure 18: Left: CPU computation time of xAB in the prefill
phase for prompts of different length. Right: Comparison of
CPU computation time for 128 tokens with different CPU
parallelism. Native: PyTorch native multi-threading [7].

7.4 Microbenchmark Evaluation

In this section, we evaluate CARASERVE’s optimizations on
CPU LoRA computation (§4.2) at a micro-benchmark level.

Sync-free CPU LoRA invocation. To analyze the perfor-
mance of our optimized CPU LoRA invocation kernel, we
use the Llama2-7B model on one A10 GPU to measure the
prefill latency of the PyTorch’s native implementation and our
optimized kernels. As Fig. 16 shows, our customized kernel
performs better than the default PyTorch kernel. As the total
number of tokens in prefill phase increases, CARASERVE’s
kernel gains up to a 16% performance increase.

Shared memory data transfer. We compare the latency of
computing CPU LoRA with different IPC methods: shared
memory and UNIX domain socket. We measure the time
it takes to perform LoRA computation and the data round
trip cost. We increase the number of receiver processes to
represent the increase in the number of CPU LoRA processes
(§4.2). Fig. 17 shows that as the number of receiver processes
increases, the domain socket-based approach suffers from
linear time increase in initialization and serialization overhead,
whereas the shared memory-based approach obtains near-
constant performance.

Multi-CPU computation. We first profile the LoRA com-
putation performance during a prefill phase with a single
CPU. We profile it with different workloads (number of to-
kens to process). We run the profiling on a Llama2-7B model
with a single A10 card. As shown in Fig. 18-Left, the CPU
has limited parallelism and does not scale to fit high work-
loads. Fig. 18-Right illustrates the performance of prefilling a
prompt of 128 tokens with CARASERVE’s multi-CPU design
(§4.2) or the native multi-core utilization of PyTorch multi-
threading module [7]. We can see that CARASERVE’s design
achieves up to 1.7× speedup.

7.5 Scheduler

In this section, we evaluate the effectiveness of our scheduling
policy (§5), which achieves a higher SLO attainment.

Baselines. Upon the arrival of new requests, we consider the
following scheduling baselines for comparison:

11

0

1

SL
O

At
ta

in
m

en
t

0.99

0.27 0.25
0.01

CaraServe
Most Idle

Random
First Fit

0

1

CD
F

Method
0

1 0.99

0.17 0.19 0.0
0.05 0.10 0.15
Latency Per Token

0

1

CD
F

Figure 19: [Simulation] Scheduler performance with S-
LoRA’s MBGMV and CARASERVE’s BGMV backend on 60 in-
stances. Top: SLO attainment and time per token CDF with
MBGMV. Bottom: Same metrics for BGMV.

• MOSTIDLE scheduler selects the inference server that has
the least workload.

• FIRSTFIT scheduler picks a server following the first-fit
bin-packing strategy, which is also adopted by Punica [1].

• RANDOM scheduler randomly picks an inference server.

Setup. Following [33], we run experiments in two settings: a
large-scale simulation and an 8-instance real-world testbed.

Large-scale simulation. We first evaluate the scheduler’s
performance through simulation, where we obtain the pre-
fill and decoding latency of the simulator by profiling. We
include all 40,000 functions from the MAF trace [21], with
aggregated RPS≈ 340, and use 60 simulated servers. We set
the SLO regarding time per token, as it corresponds to the
perceived "speed" of the inference service. The SLO is set to
1.5× higher than that achieved by the HF-PEFT solution (§1).
Fig. 19-Top shows that with S-LoRA’s MBGMV, CARASERVE’s
scheduler achieves an SLO attainment of 99% and speeds up
the average time per token by 16.1/18.8/36.4% compared to
the MOSTIDLE/RANDOM/FIRSTFIT. Fig. 19-Bottom shows
the performance with Punica’s BGMV kernel, which is also
adopted in CARASERVE (§4.1). Our scheduler has 99% SLO
attainment and accelerates time per token up to 36.0%.

Testbed. Next, we evaluate the scheduler in a small-scale
testbed, which has 8×A10 GPUs to support 8 Llama2-7B
models. Due to the limited number of available CPUs, we use
CACHED (§7.1) as the LoRA serving backend, as our CPU-
assisted design can rival its performance in various settings
(§7.2, §7.3). We randomly sample 1,200 requests with an ag-
gregated RPS≈ 60 from the MAF trace [21]. The SLO is also
set regarding time per token, which is 1.5× higher than that
achieved by the HF-PEFT solution. As illustrated in Fig. 20,
CARASERVE outperforms other baselines by achieving the
highest SLO attainment of 80%.

Method
0.0

0.5

1.0

SL
O

At
ta

in
m

en
t

0.8
0.42 0.43

0.22

CaraServe
MostIdle

Random
FirstFit

0.0 0.2
Latency Per Token

0

1

CD
F

Figure 20: [Testbed] Scheduler performance on 8 instances
(BGMV). Left: SLO attainment; Right: Time per token CDF.

8 Related Work and Discussion

LLM inference. Optimizing LLM inference is the target of
recent studies. Orca [31] proposed iteration-level continuous
batching to improve the throughput of LLM serving. Fur-
ther, vLLM [11] addressed the issue of the GPU memory
fragmentation resulting from LLM’s KV Cache, improving
serving throughput by high GPU efficiency. FlexGen [24] sup-
ported LLMs with limited GPU memory, maximizing serving
throughput by efficiently storing, accessing, and quantizing
tensors. SpotServe [15] leveraged preemptible GPU instances
on clouds to reduce the serving cost. CARASERVE is com-
patible with these optimizations, has already supported con-
tinuous batching, and has employed optimized GPU memory
management mechanism [16] to mitigate fragmentation.

Multi-tenant LoRA serving. Multi-tenant LoRA serving
has recently gained attention in the research community.
Punica [1] and S-LoRA [23] are pioneering works targeting
multi-tenant LoRA serving. They have designed optimized
CUDA kernels for GPU LoRA computation and leveraged
existing GPU memory management mechanisms [11, 16] to
minimize memory fragmentation. These designs are portable
to CARASERVE. However, they overlooked the challenges of
cold-start and heterogeneity-aware scheduler (§2). Besides,
PetS [35] proposed a unified framework to serve adapters
of different types with LLMs. However, it only considered
the discriminative language models, which lack an iterative
decoding process and continuous batching.

Multi-model inference serving. A series of works have
developed systems for multi-model inference serving, in-
cluding Clipper [3], MArk [32], Nexus [22], INFaaS [20],
Clockwork [8], Shepherd [33], and AlpaServe [12]. These
works optimize batching, caching, model placement, and cost-
efficiency in serving multiple models in a cluster. However,
they are not specially designed to serve generative LLMs and
heterogeneous LoRA adapters, leading to optimization gaps.

Discussion. CARASERVE’s design is not limited to a particu-
lar framework and supports various LLM types. Nevertheless,
the scalability of CPU-assisted LoRA serving is limited by the
number of available CPUs in the host. Typically, GPU servers
designed for LLM serving have abundant CPU cores and host
memory. For example, the g5.48xlarge instance provided by

12

AWS has 192 vCPU cores. Such server configurations are also
widely used in production clusters [30], where many GPU
instances have one A10 GPU and 128 vCPU cores. In future
work, we plan to leverage resource disaggregation to address
the scalability issue.

9 Conclusion

This paper presents CARASERVE, a multi-tenant LoRA serv-
ing system that is GPU-efficient, cold-start-free, and SLO-
aware. In a nutshell, CARASERVE exploits base model multi-
plexing to serve many LoRA adapters in a batch, coordinates
LoRA computation on CPU and GPU to avoid cold-start, and
employs a rank-aware scheduler to meet SLOs. CARASERVE
is framework-agnostic and can be easily extended to various
LLMs. Compared to existing systems, CARASERVE signif-
icantly improves serving efficiency by reducing the request
serving latency by up to 50% and achieves an SLO attainment
of 99%.

References

[1] Lequn Chen, Zihao Ye, Yongji Wu, Danyang Zhuo, Luis
Ceze, and Arvind Krishnamurthy. Punica: Multi-tenant
lora serving, 2023.

[2] Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,
Zhijian Liu, Song Han, and Jiaya Jia. Longlora: Effi-
cient fine-tuning of long-context large language models.
arXiv:2309.12307, 2023.

[3] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J
Franklin, Joseph E Gonzalez, and Ion Stoica. Clipper:
A {Low-Latency} online prediction serving system. In
14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 613–627, 2017.

[4] Databricks. Llm inference performance engineer-
ing: Best practices. https://www.databricks.com/blog/
llm-inference-performance-engineering-best-practices,
2023.

[5] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. Qlora: Efficient finetuning of quan-
tized llms. In Advances in Neural Information Process-
ing Systems, 2023.

[6] Nvidia Developer. Nvidia nsight compute. https:
//developer.nvidia.com/nsight-compute, 2024.

[7] PyTorch Docs. Cpu threading and torchscript inference.
https://pytorch.org/docs/stable/notes/cpu_threading_
torchscript_inference.html#runtime-api, 2023.

[8] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao,
Antoine Kaufmann, Ymir Vigfusson, and Jonathan

Mace. Serving DNNs like clockwork: Performance
predictability from the bottom up. In 14th USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI 20), pages 443–462. USENIX Association,
November 2020.

[9] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. LoRA: Low-rank adaptation of large language
models. In International Conference on Learning Rep-
resentations, 2022.

[10] Huggingface. Text generation inference. https://github.
com/huggingface/text-generation-inference.

[11] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gonza-
lez, Hao Zhang, and Ion Stoica. Efficient memory man-
agement for large language model serving with page-
dattention. In Proceedings of the ACM SIGOPS 29th
Symposium on Operating Systems Principles, 2023.

[12] Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent
Liu, Ying Sheng, Xin Jin, Yanping Huang, Zhifeng Chen,
Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. Al-
paServe: Statistical multiplexing with model parallelism
for deep learning serving. In 17th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI 23), pages 663–679, Boston, MA, July 2023.
USENIX Association.

[13] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick
Shankar, Sameh Elnikety, Somali Chaterji, and Saurabh
Bagchi. ORION and the three rights: Sizing, bundling,
and prewarming for serverless DAGs. In 16th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pages 303–320, Carlsbad, CA,
July 2022. USENIX Association.

[14] Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut,
Younes Belkada, Sayak Paul, and Benjamin Bossan.
Peft: State-of-the-art parameter-efficient fine-tuning
methods. https://github.com/huggingface/peft, 2022.

[15] Xupeng Miao, Chunan Shi, Jiangfei Duan, Xiaoli Xi,
Dahua Lin, Bin Cui, and Zhihao Jia. Spotserve: Serv-
ing generative large language models on preemptible
instances. In ASPLOS, 2024.

[16] ModelTC. Light llm. https://github.com/ModelTC/
lightllm.

[17] OpenAI. Custom instructions for chatgpt. https://openai.
com/blog/custom-instructions-for-chatgpt, 2023.

[18] OpenAI. Gpt-3.5 turbo fine-tuning and
api updates. https://openai.com/blog/
gpt-3-5-turbo-fine-tuning-and-api-updates, 2023.

13

https://www.databricks.com/blog/llm-inference-performance-engineering-best-practices
https://www.databricks.com/blog/llm-inference-performance-engineering-best-practices
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://pytorch.org/docs/stable/notes/cpu_threading_torchscript_inference.html#runtime-api
https://pytorch.org/docs/stable/notes/cpu_threading_torchscript_inference.html#runtime-api
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/peft
https://github.com/ModelTC/lightllm
https://github.com/ModelTC/lightllm
https://openai.com/blog/custom-instructions-for-chatgpt
https://openai.com/blog/custom-instructions-for-chatgpt
https://openai.com/blog/gpt-3-5-turbo-fine-tuning-and-api-updates
https://openai.com/blog/gpt-3-5-turbo-fine-tuning-and-api-updates

[19] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Py-
torch: An imperative style, high-performance deep learn-
ing library. Advances in neural information processing
systems, 32, 2019.

[20] Francisco Romero, Qian Li, Neeraja J. Yadwadkar, and
Christos Kozyrakis. INFaaS: Automated model-less in-
ference serving. In 2021 USENIX Annual Technical Con-
ference (USENIX ATC 21), pages 397–411. USENIX
Association, July 2021.

[21] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Go-
har Chaudhry, Paul Batum, Jason Cooke, Eduardo Lau-
reano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. Serverless in the wild: Characterizing and
optimizing the serverless workload at a large cloud
provider. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), 2020.

[22] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao,
Bingyu Kong, Matthai Philipose, Arvind Krishnamurthy,
and Ravi Sundaram. Nexus: A gpu cluster engine for
accelerating dnn-based video analysis. In Proceedings
of the 27th ACM Symposium on Operating Systems Prin-
ciples, pages 322–337, 2019.

[23] Ying Sheng, Shiyi Cao, Dacheng Li, Coleman Hooper,
Nicholas Lee, Shuo Yang, Christopher Chou, Banghua
Zhu, Lianmin Zheng, Kurt Keutzer, Joseph E. Gonzalez,
and Ion Stoica. S-lora: Serving thousands of concurrent
lora adapters, 2023.

[24] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan
Li, Max Ryabinin, Beidi Chen, Percy Liang, Christopher
Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput
generative inference of large language models with a
single gpu. In International Conference on Machine
Learning, pages 31094–31116. PMLR, 2023.

[25] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter language
models using model parallelism, 2020.

[26] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. Stanford alpaca: An
instruction-following llama model. https://github.com/
tatsu-lab/stanford_alpaca., 2023.

[27] Philippe Tillet, Hsiang-Tsung Kung, and David Cox.
Triton: an intermediate language and compiler for tiled
neural network computations. In Proceedings of the 3rd
ACM SIGPLAN International Workshop on Machine
Learning and Programming Languages, pages 10–19,
2019.

[28] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
Llama 2: Open foundation and fine-tuned chat models,
2023.

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances
in neural information processing systems, 2017.

[30] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang,
Cheng Wang, Jian He, Yong Li, Liping Zhang, Wei Lin,
and Yu Ding. MLaaS in the wild: Workload analysis
and scheduling in Large-Scale heterogeneous GPU clus-
ters. In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22), pages 945–960,
Renton, WA, April 2022. USENIX Association.

[31] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-
jeong Kim, and Byung-Gon Chun. Orca: A distributed
serving system for Transformer-Based generative mod-
els. In 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22), pages 521–538,
Carlsbad, CA, July 2022. USENIX Association.

[32] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng
Yan. {MArk}: Exploiting cloud services for {Cost-
Effective},{SLO-Aware} machine learning inference
serving. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pages 1049–1062, 2019.

[33] Hong Zhang, Yupeng Tang, Anurag Khandelwal, and
Ion Stoica. SHEPHERD: Serving DNNs in the wild. In
20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23), pages 787–808, Boston,
MA, April 2023. USENIX Association.

[34] Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt:
Open pre-trained transformer language models. arXiv
preprint arXiv:2205.01068, 2022.

[35] Zhe Zhou, Xuechao Wei, Jiejing Zhang, and Guangyu
Sun. PetS: A unified framework for Parameter-Efficient
transformers serving. In 2022 USENIX Annual Techni-
cal Conference (USENIX ATC 22), 2022.

14

https:// github.com/tatsu-lab/stanford_alpaca.
https:// github.com/tatsu-lab/stanford_alpaca.

	Introduction
	Background and Motivation
	LLM Inference
	Multi-Tenant LoRA Serving
	Challenges

	CaraServe Overview
	CPU-Assisted LoRA Serving
	LoRA Computation on GPU and CPU
	Efficient GPU-CPU LoRA Coordination

	Rank-Aware Scheduling
	Implementation
	Evaluation
	Experimental Setup
	End-to-End Performance on a Single GPU
	End-to-End Performance on Multi-GPUs
	Microbenchmark Evaluation
	Scheduler

	Related Work and Discussion
	Conclusion

