
1

Efficient Training of Large Language Models on
Distributed Infrastructures: A Survey

Jiangfei Duan∗, Shuo Zhang∗, Zerui Wang∗, Lijuan Jiang, Wenwen Qu, Qinghao Hu, Guoteng Wang,
Qizhen Weng, Hang Yan, Xingcheng Zhang, Xipeng Qiu, Dahua Lin, Yonggang Wen, Xin Jin,

Tianwei Zhang and Peng SunB

Abstract— Large Language Models (LLMs) like GPT and LLaMA are revolutionizing the AI industry with their sophisticated capabilities.
Training these models requires vast GPU clusters and significant computing time, posing major challenges in terms of scalability,
efficiency, and reliability. This survey explores recent advancements in training systems for LLMs, including innovations in training
infrastructure with AI accelerators, networking, storage, and scheduling. Additionally, the survey covers parallelism strategies, as well
as optimizations for computation, communication, and memory in distributed LLM training. It also includes approaches of maintaining
system reliability over extended training periods. By examining current innovations and future directions, this survey aims to provide
valuable insights towards improving LLM training systems and tackling ongoing challenges. Furthermore, traditional digital circuit-based
computing systems face significant constraints in meeting the computational demands of LLMs, highlighting the need for innovative
solutions such as optical computing and optical networks.

Index Terms—Large Language Models; Distributed Training; Machine Learning Systems.

✦

1 INTRODUCTION

Large Language Models (LLMs) are transforming the AI in-
dustry, demonstrating remarkable capabilities across a wide
range of tasks and applications, including personal assis-
tants [1], code copilot [2], chip design [3] and scientific dis-
covery [4]. The success of this revolution is built on the un-
precedented scale of transformer-based LLMs like GPT [5],
LLaMA [6], Gemini [7], etc. Moreover, it is evidenced that
the scaling of LLMs has not plateaued [8]. This trend has sig-
nificantly shifted the design of underlying training systems
and infrastructures, since LLM typically follows a relatively
fixed architecture and its training exclusively occupies huge
GPU clusters over extended periods. For example, the pre-
training of LLaMA-3 takes approximately 54 days with 16K
H100-80GB GPU on Meta’s production cluster [9].

LLM training highlights significant challenges for to-
day’s training system and infrastructure in terms of “SER”,
i.e., Scalability, Efficiency, and Reliability. Scalability demands

• Jiangfei Duan and Dahua Lin are with Shanghai AI Laboratory and the
Chinese University of Hong Kong.
E-mail: {dj021, dhlin}@ie.cuhk.edu.hk

• Shuo Zhang and Xipeng Qiu are with Shanghai AI Laboratory and Fudan
University.
E-mail: {zhangshuo, qiuxipeng}@pjlab.org.cn

• Zerui Wang is with Shanghai AI Laboratory and Shanghai Jiao Tong
University.
E-mail: wangzerui@pjlab.org.cn

• Qinghao Hu, Yonggang Wen and Tianwei Zhang are with Nanyang Tech-
nological University.
E-mail: {qinghao.hu, ygwen, tianwei.zhang}@ntu.edu.sg

• Xin Jin is with School of Computer Science, Peking University.
E-mail: xinjinpku@pku.edu.cn

• Lijuan Jiang, Wenwen Qu, Guoteng Wang, Qizhen Weng, Hang Yan,
Xingcheng Zhang and Peng Sun are with Shanghai AI Laboratory.
E-mail: {jianglijuan, quwenwen, wangguoteng, wengqizhen, yanhang,
zhangxingcheng, sunpeng}@pjlab.org.cn

• ∗ Equal Contribution.

that both infrastructure and systems adapt seamlessly to
massive clusters of tens of thousands of GPUs or AI ac-
celerators, while preserving training correctness and model
accuracy. This requires innovative solutions in hardware
configuration, networking, and training framework. Effi-
ciency focuses on maximizing resource utilization across the
entire cluster, often measured by Model FLOPs Utilization
(MFU). Achieving high MFU involves optimizing computa-
tion, minimizing communication overhead, and efficiently
managing memory at an unprecedented scale. Reliability
are critical given the prolonged duration of LLM training,
usually lasting weeks to months. The system must maintain
consistent performance and be resilient to various types of
failures, including hardware malfunctions, network issues,
and software errors. It should be capable of swiftly detecting
and recovering from these failures without significant loss
of progress or training quality. These interrelated challenges
necessitate a holistic approach to system and infrastructure
design, pushing the boundaries of large-scale distributed
computing and opening new avenues for research and in-
novation in high-performance machine learning systems.

This survey paper aims to provide a comprehensive
overview of the advancements in LLM training systems and
infrastructure, addressing the aforementioned challenges.
This survey spans from the distributed training infras-
tructure to training systems. We examine innovative ap-
proaches to infrastructure design, covering advancements
in GPU clusters, high-performance networking, and dis-
tributed storage systems tailored for LLM workloads. We
also explore the key aspects of distributed training systems,
including parallelism strategies, computation, communica-
tion and memory optimizations that enhance the scalabil-
ity and efficiency. We also delve into fault tolerance mech-
anisms for improving training reliability. By synthesizing
recent advancements and identifying future research direc-



2

Section 3
Infrastructure

Section 3.1
AI Accelerators

Section 3.2
Network

Infrastructure

Section 3.3
Storage

Section 4
Parallelism 

Schemes

Section 4.1
Hybrid Parallelism

Section 4.2
Auto Parallelism

Section 4.3
Heterogeneous

Parallelism

Section 5
Computation
Optimizations

Section 5.1
Operator

Optimization

Section 5.2
Mixed-Precision

Training

Section 6
Memory

Optimizations

Section 6.1
Activation 

Recomputation

Section 6.2
Redundancy
Reduction

Section 6.3
Defragmentation

Section 6.4
Offloading

Section 7
Comm.

Optimizations

Section 7.1
Collective 

Communication

Section 7.2
Communication 

Scheduling

Section 7.3
In-Network
Aggregation

Section 8
Fault Tolerance

Section 8.1
Failure Analysis

Section 8.2
Anomaly Detection

Section 8.3
Checkpoint-Based 

Recovery

Section 8.4
Checkpoint-Free 

Recovery

Fig. 1: Overall structure of this survey.

tions, this survey aims to provide researchers and practi-
tioners with insights into the most promising avenues for
improving LLM training systems. Our goal is to offer a
valuable resource that not only addresses current challenges
but also paves the way for future innovations in large-scale
machine learning infrastructure.

Organization. Fig. 1 shows the organization of this survey.
Section 2 discusses the background information about LLM
architecture, characteristics and challenges of LLM training.
In Section 3, we summarize the key aspects of the train-
ing infrastructure, including AI accelerators, network infras-
tructure and storage systems. In Section 4, we investigate
the parallelism schemes for distributed LLM training. In
Section 5, we discuss computation optimizations to harness
the unprecedented computational capabilities. In Section 6,
we discuss techniques to optimize the memory footprint in
LLM training. In Section 7, we introduce communication
optimizations to minimize the communication overhead.
In Section 8, we first present a failure analysis, the cover
approaches to enable fast failure detection and recovery.
Finally, we conclude the survey in Section 9.

2 BACKGROUND

2.1 Transformer-based LLMs

The current state-of-the-art Large Language Models (LLMs)
are predominantly transformer-based. Their core architec-
ture is built around the attention mechanism [10], which
allows the model to dynamically weigh the importance of
different words in a sentence. Fig. 2 depicts the typical ar-
chitecture of a transformer layer [10], which can be stacked

multiple times to construct an LLM. The input text is first
tokenized into individual tokens, which are then converted
into a token vector X via an embedding layer. To preserve
the sequential nature of the text, the token vector is embed-
ded with positional information. The resulting token vector
is then fed into the transformer layer, which consists of an
Attention block and a Feed-Forward Neural Network (FFN)
block.

Suppose the input token vector is X = [x1, x2, · · · , xn].
These tokens are first transformed into query Q, key K
and value V tensors via linear transformation. The attention
mechanism computes the attention output as follows:

Attention(Q,K, V ) = softmax

(
QKT

√
d

)
V (1)

where d is the dimension of the key tensor. This formula
ensures that the LLM can focus on relevant parts of the
input sequence by calculating a weighted sum of the values,
where the weights are derived from the similarity between
the queries and keys. After the attention layer, the output is
passed through a FFN for further processing.

Nowadays, LLMs generally follow the original decoder-
only transformer architecture but incorporate modifications
to the attention mechanism and FFN to enhance efficiency
and performance. The original attention mechanism, known
as Multi-Head Attention (MHA) [10], suffers from quadratic
computational complexity and high memory consumption
due to the key-value cache. To address these issues, several
variants such as Multi-Query Attention (MQA) [11], Group-
Query Attention (GQA) [12] and Multi-Latent Attention
(MLA) [13] have been proposed. A notable advancement
of the FFN component is the Mixture-of-Experts (MoE) [14],



3

Fig. 2: A typical Transformer layer contains an Attention
block and a Feed-Forward Network (FFN) block.

[15] architecture, which employs a sparsely activated FFN.
In MoE, only a subset of the FFN layers (or experts) are
activated for each input, significantly reducing the compu-
tational load while maintaining high model capacity.

2.2 LLM Training Workloads Characteristics

The characteristics of LLM training workloads diverge sig-
nificantly from traditional deep learning workloads, pri-
marily due to their complexity and scale. These unique
characteristics affect training system design, performance,
scalability, and resource utilization. Here, we highlight key
differences and requirements for LLMs.

(1) Homogeneous Model Architecture. Unlike prior DL
workloads that employed various model architectures (e.g.,
LSTM [16], CNN [17]) for different tasks, LLMs predom-
inantly use the Transformer architecture [10]. Models like
GPT [5], LLaMA [6], InternLM [18] and MOSS [19] all
share this common foundation. This architectural unifor-
mity presents significant potential for optimizing system
performance for a particular model architecture.

(2) Unprecedented Scale and Training Duration. LLM
training operates at an unparalleled scale, typically updat-
ing models with hundreds of billions of parameters with
terabyte-scale training datasets. Such magnitude necessi-
tates distributed training across huge GPU clusters and
presents challenges in maintaining high efficiency. Besides,
the training of LLMs can span weeks or months, demanding
robust fault tolerance mechanisms and efficient checkpoint-
ing strategies to safeguard against data loss and facilitate
the resumption of interrupted training sessions.

(3) Specialized Software Optimization. To accommodate
the enormous model size of LLMs, specialized systems im-
plement advanced techniques to optimize execution. For
example, Megatron [20] and Alpa [21] accelerate training
through hybrid parallelism. DeepSpeed [22] reduces mem-
ory consumption by integrating state-sharding optimizers.

(4) Shift in Training Paradigm. Traditional DL workloads
follow a task-specific paradigm, training models on domain-
specific data for particular tasks, such as translation. In con-
trast, LLMs adopt a self-supervised training approach on ex-
tensive datasets to create foundation models, which are then
adapted for various downstream tasks. This paradigm shift
represents a substantial change in the model development
pipeline, including pretraining and alignment phases, and
results in distinct workload characteristics compared to pre-
vious DL workloads. From the datacenter perspective, LLM
development involves numerous small-scale workloads that
are associated with pretraining, including alignment (i.e.,
fine-tuning) and periodical evaluation workloads [23].

2.3 LLM Training Challenges
The unique characteristics of LLM training workloads give
rise to significant challenges in developing efficient training
systems and infrastructure. These challenges primarily man-
ifest in three critical areas: scalability, efficiency, and reliability.
Each of these challenges stems directly from the massive
scale of LLMs and the complexity of their training processes,
requiring innovative solutions that push the boundaries of
distributed computing and machine learning systems. Be-
low, we detail these challenges and their implications for
LLM training:

(1) Scalablity. The success of LLMs is largely attributed
to their scale, with performance often improving as LLMs
grow larger [8]. However, the scaling of model size in-
troduces substantial scalability challenges, since training
LLMs requires increasingly large clusters of GPUs or spe-
cialized AI accelerators. First, building scalable infrastruc-
ture that can provide massive computations and memory
capacity is essential. This involves designing and deploy-
ing large clusters of GPUs or specialized AI accelerators,
high-performance networking to connect these devices, and
distributed storage systems capable of handling enormous
datasets and model checkpoints. The challenge lies in ensur-
ing that these components work together efficiently at scale,
managing heat dissipation, power consumption, and hard-
ware failures in large-scale deployments. Second, designing
scalable training systems that can effectively utilize mas-
sive accelerators in parallel is crucial. This includes design-
ing parallelization strategies and communication algorithms
that can achieve near-linear scalability with thousands of
accelerators while maintaining consistent LLM accuracy.

(2) Efficiency. The enormous computational requirements
of LLM training translate to high training costs, making
it imperative to maximize the efficiency of hardware and
software systems. The efficiency can be measured with MFU
(Model FLOPs Utilization), which quantifies how effectively
the system uses available computing resources. However,
achieving high efficiency at scale remains a significant chal-
lenge. For instance, LLaMA3 achieves only 38% to 41%
MFU on 16K GPUs [9], highlighting the difficulty in main-
taining high utilization as systems scale. Maximizing effi-
ciency demands the optimization in parallelism, computa-
tion, communication and memory. First, the parallelism of
distributed LLM training demands careful design to mini-
mize communication demands. Second, optimized compu-
tation operators and lower precision arithmetic are crucial



4

to achieve high GPU FLOPS utilization. Third, communi-
cation overhead needs to minimized to reduce GPU idle
time. Finally, efficient memory optimizations are required to
hold LLMs in existing hardwares and reduce FLOPs waste
of recomputation.

(3) Reliability. Ensuring the reliability of LLM training
over extended periods is paramount. As training jobs can
span weeks or months on large clusters of tens of thousands
of GPUs, the probability of training failures increases, neces-
sitating fast failure detection and recovery mechanism for
resilient LLM training. First, LLM training jobs may crash
due to various errors, making it hard to identify the exact
fault reason across tens of thousands GPUs quickly. Second,
the hang of LLM training jobs results in all GPUs becoming
idle due to the synchronous nature of training, resulting in
significant waste. Moreover, some intricate anomalies, like
redundant link failures or stragglers, may not cause imme-
diate crashes but can lead to training slowdowns. This insta-
bility can result in reduced training efficiency. To tackle these
challenges, robust anomaly detection systems capable of de-
tecting both catastrophic failures and performance degrada-
tions are essential. Additionally, implementing fault-tolerant
training frameworks that can seamlessly handle node fail-
ures and network issues is crucial.

2.4 Related Survey
This work focuses on the efficient training system and in-
frastructure of transformer-based LLMs, including the de-
sign of underlying distributed infrastructure, paradigm of
parallelism, optimizations of computation and communica-
tion, efficient memory management and resilience of train-
ing system. We also investigate the efficient training systems
of emerging workloads such as MoE, a promising efficient
LLM variant, and fine-tuning, a necessary stage to align the
capabilities of LLMs. However, this work does not cover
the evolution of promising LLM architectures [24], [25] and
the algorithms for training [26], instruction tuning [27] and
alignment [28] towards powerful and safe LLMs. While
previous works [29]–[31] have discussed some aspects of
LLM training systems, their primary focus was not on the
design of efficient training systems and infrastructure. Wan
et al. [29] aims to provide a holistic view of efficient LLM
advances in model- and data-centric methods. Liu et al. [30]
covers the training and inference deployment techniques
of LLMs. Xu et al. [31] targets on discussing the resource-
efficient strategies for LLM development in both algorithmic
and systemic aspects. This work also discuss the approaches
for quantized LLM training and efficient LLM fine-tuning,
but we focus on the systemic approaches. The algorithmic
approaches to compress and fine-tune LLMs are discussed
by Zhu et al. [32] and Han et al. [33]. The discussion scope
of this work does not include advanced optimization al-
gorithms [34] and distributed DNN training systems [35].
While Liang et al. [36] have extensively reviewed auto par-
allelism approaches, their focus is on general DNNs rather
than LLMs specifically.

3 INFRASTRUCTURE FOR LLM TRAINING

In this section, we explore the infrastructure design for train-
ing LLMs, encompassing accelerators, networks, storage,

Fig. 3: Infrastructure overview for distributed LLM training.

and scheduling systems (Fig. 3).

3.1 AI Accelerators
The rapid progress of LLMs is significantly benefiting from
the evolution of GPUs and AI accelerators, which are crucial
for improving the model training performance.

3.1.1 NVIDIA Graphics Processing Unit (GPU)
NVIDIA GPUs have become an essential component for dis-
tributed LLM training due to their superior ability to han-
dle parallel computations. These processors are built with
a multitude of compact, high-efficiency cores that can ex-
ecute numerous tasks simultaneously. The design of GPUs
is ideally matched for the matrix and vector operations in
LLM training. They offer support for various numerical pre-
cision formats such as FP32, TF32, FP16, BF16, FP8, INT8,
and even FP4. This allows researchers to well balance the
training speed and accuracy, making LLM training more
efficient [110]. NVIDIA’s GPU programming language (i.e.
CUDA) makes it easier to manage how tasks are split and
processed in parallel on GPUs. This helps researchers har-
ness the full power of GPUs for training advanced LLMs.

A typical GPU comprises an array of Streaming Multi-
processors (SMs), with each SM housing several cores that
share an instruction unit but are capable of executing dis-
tinct threads in parallel. The shared memory within each
SM allows for effective data exchange and synchronization
among threads, which is essential for optimizing the mem-
ory access patterns required for LLM computations. Fur-
thermore, GPUs are furnished with high-bandwidth mem-
ory (HBM), which accelerates data transfer and mitigates
memory access bottlenecks in computationally intensive
tasks. The latest GPU architectures, such as NVIDIA’s Am-
pere [37], Hopper [38] and Blackwell [39], are continu-
ously pushing the boundaries of LLM computation. They
offer enhanced memory bandwidth and capacity, increased
floating-point operations per second (FLOPS), and special-
ized mixed-precision computing units like Tensor Cores.
Notably, NVIDIA’s Hopper architecture introduces a sig-
nificant advancement with the Transformer Engine [111],
a feature that leverages mixed FP8 and FP16 precisions to
expedite the training of Transformer-based LLMs.

3.1.2 Other AI Accelerators
Distributed LLM training on AMD GPUs has become a re-
ality, particularly on Frontier [112], the world’s first exas-



5

In
fr

as
tr

uc
tu

re
fo

r
LL

M
Tr

ai
ni

ng
AI Accelerators

NVIDIA GPUs Ampere [37], Hopper [38], Blackwell [39]

Other AI Accelerators AMD GPU [40], GAUDI [41], TPU [42], Graphcore IPU [43],
Cerebras CS-2 [44]

Network Infrastructure

Chip-to-Chip
Cube-Mesh Topology: NVLink-1.0 [45]
Fully-Connected Topology: NVSwitch [46], Infinity Fabric [47]
2D/3D-Torus Topology: TPUv2 [48], TPUv3 [49], TPUv4 [42]

Node-to-Node GPUDirect-RDMA [50], InfiniBand EDR/HDR/NDR [51],
RoCE-v1 [52], RoCE-v2 [53], iWARP [54]

Network Topology

HPC Topology: Clos [55], BCube [56], DCell [57], Jellyfish [58],
Torus [59], Dragonfly [60], Dragonfly+ [61]
Training-Optimized Topology: Rail-Optimized [62], HPN [63],
Rail-Only [64], BiGraph [63], HammingMesh [65]
Reconfiguable Topology: SiP-ML [66], TopoOpt [67], TPUv4 [42]

Load Balancing & CC

Load Balancing: ECMP [68], Multi-Flow with Enhanced-ECMP [9],
Packet spraying [69], Ethereal [70], HPN [63], MegaScale [71]
Congestion Control (CC): PFC [72], TIMELY [73], Swift [74],
DCQCN [75], [76], HPCC [77], EQDS [78], RoCC [79],
MLTCP [80], CASSINI [81], MLT [82]

Storage Systems
Checkpoint Storage Tectonic [83], HDFS [84], Ceph Object Storage [85]

Training Data Storage Lustre [86], GPFS [87], BeeGFS [88], Alluxio [89], JuiceFS [90],
Quiver [91], Fluid [92]

Scheduling Systems

Workload Scheduling
Tiresias [93], THEMIS [94], ElasticFlow [95], Gavel [96],
Gandivafair [97], FGD [98], Lucid [99], Pollux [100], Sia [101],
Crius [102], Hydro [103], Acme [23]

Resource Scheduling Cassini [81], HIRE [104], SiloD [105], Synergy [106], EnvPipe [107],
Zeus [108], Perseus [109]

Fig. 4: Studies on infrastructure optimizations for distributed LLM training.

cale supercomputer. Each Frontier node is equipped with
8 MI250X [40] AMD GPUs, each with 64 GB of HBM
and a theoretical FP16 peak performance of 191.5 TFLOPS.
This configuration presents an unparalleled opportunity for
training trillion-parameter models efficiently. The key to un-
locking this potential lies in adapting existing CUDA-based
tools and frameworks to the ROCm platform [113], [114].
Notably, ROCm-enabled versions of FlashAttention [115]
and FlashAttention2 [116] have been developed, allowing
for the efficient execution of attention.

Various AI accelerators with powerful computing and
software optimizations have been developed to train LLMs.
GAUDI [41] offers a heterogeneous compute architecture
comprising two Matrix Multiplication Engines and a cluster
of fully programmable tensor processor cores, enabling ef-
ficient handling of LLM training operations. This processor
can support the training of a GPT-3 model with 175 billion
parameters using 384 GAUDI2 cards [117]. Google TPUv4
[42] supercomputer has 4096 chips, supporting LLM train-
ing at an average of approximately 60% of peak FLOPS.
Graphcore Bow Pod64 [43], a one-rack setup with 64 Bow-
class IPUs, achieves 22 petaFLOPS. It supports GPT-3 model
training with 256 IPUs. Cerebras CS-2 [44] is a wafer-scale
deep learning accelerator comprising 850,000 processing
cores, each providing 48KB of dedicated SRAM memory.
It is used to train Cerebras-GPT, a family of open compute-
optimal language models [118].

3.2 Network Infrastructure

Communication overhead is a major obstacle to scaling LLM
training [119], [120]. For example, reducing model gradients
during training can lead to over 90% of the training time
being spent on communication [121]. To address this, the
research community has focused on improving communica-
tion infrastructure for LLM training.

3.2.1 Chip-to-Chip Communications

Chip-to-chip communication is pivotal for data transfer be-
tween AI accelerators within a node, significantly impacting
the efficiency of LLM training. Traditionally, this communi-
cation has relied on PCI Express (PCIe) [122], which em-
ploys a tree topology—a hierarchical structure where mul-
tiple devices connect to a single root complex. Over the
years, PCIe has improved its bandwidth: PCIe 3.0 offers
approximately 1 GB/s per lane, totaling about 16 GB/s for a
configuration with 16 lanes; PCIe 4.0 doubles the bandwidth
to 2 GB/s per lane, while PCIe 5.0 further increases it to 4
GB/s per lane. Despite these enhancements, PCIe’s inherent
limitations in bandwidth, latency, and scalability render it
suboptimal for LLM training [123]. To address these limi-
tations, specialized chip-to-chip interconnects like NVLink
[45] are increasingly preferred for LLM training. Compared
to PCIe, these advanced interconnects provide significantly
higher bandwidth and lower latency by utilizing various



6

Fig. 5: Five chip-to-chip topologies: tree topology, cube-mesh topology, switch-based fully-connected topology, P2P-based
fully-connected topology, and 2D-torus topology.

topologies: cube-mesh, fully-connected, and 3D-torus. Addi-
tionally, shared memory models, specialized communica-
tion protocols, and synchronization mechanisms also play
crucial roles.

Cube-Mesh Topology. NVLink-1.0 [45] offers a direct and
high-speed connection between GPUs, with each link pro-
viding 160 GB/s of bidirectional bandwidth. This architec-
ture enables the formation of planar mesh structures for four
GPUs and a cube-mesh topology for eight GPUs, which can
be configured into a DGX-1 server. This cube-mesh config-
uration, although not an all-to-all connection, significantly
enhances data communication efficiency and training per-
formance on GPUs.

Fully-Connected Topology. Many interconnects utilize ei-
ther switch-based or P2P-based fully connected topolo-
gies to improve chip-to-chip communication performance.
NVIDIA uses NVSwitch [46] to achieve switch-based all-to-
all interconnections among GPUs. In the DGX-2 [124] sys-
tem, six NVSwitches fully connect each of the sixteen GPUs
to all others, providing a bidirectional bandwidth of 300
GB/s between any two GPUs. This bandwidth increased to
600 GB/s with NVSwitch 2.0 and further to 900 GB/s with
NVSwitch 3.0. Intel, AMD, and Huawei Ascend utilize P2P-
based fully-connected topology for their accelerators, where
each chip directly connects to every other chip within the
same node using Ethernet or Infinity Fabric [47]. Compared
to the switch-based topology, the bandwidth between two
GPUs in a P2P-based topology is limited by the bandwidth
of the directly connected link.

2D/3D-Torus Topology. Google’s TPU systems utilizes
Torus network topology [59] for chip-to-chip communica-
tion. It establishes connectivity by linking each TPU chip
to its four adjacent neighbors in a grid, with wraparound
edges, thus forming a toroidal structure. This architectural
design ensures low latency and high bandwidth due to
the availability of multiple direct paths between chips.
Specifically, the TPUv2 [48] supercomputer employs a 16x16
2D torus configuration, encompassing 256 chips, intercon-
nected via high-speed Inter-Chip Interconnect (ICI) links.
The TPUv3 [49] supercomputer utilizes a 32x32 2D torus,
comprising 1024 chips. Advancing from the 2D torus design,
the TPUv4 [42] supercomputer organizes compute resources
into multi-machine cubes with a 3D torus topology. Each
TPU machine contains four chips arranged in a 2x2x1 mesh,

interconnected through the ICI links. Sixteen of these TPU
machines are combined to form a data center rack, where ICI
links within the rack interconnect to create a 4x4x4 mesh,
resulting in a 3D torus structure. This advanced configu-
ration significantly enhances communication efficiency and
scalability, particularly beneficial for LLM training.

3.2.2 Node-to-Node Communications
Remote Direct Memory Access (RDMA) [54] enables high-
speed and low-latency data transfer between nodes. RDMA
allows direct memory access from the memory of one com-
puter to another without involving either node’s operating
system. GPUDirect-RDMA [50] enhances this process by
enabling direct communication between GPUs across dif-
ferent nodes, bypassing the CPU entirely. This technology
is particularly beneficial for LLM training, as it accelerates
the synchronization of model parameters and gradients. The
two most prevalent RDMA technologies are InfiniBand [51]
and RDMA over Converged Ethernet (RoCE) [52].

InfiniBand is a high-speed, low-latency networking tech-
nology widely utilized in HPC (High Performance Comput-
ing) environments, such as the Eagle supercomputer [125].
This technology necessitates a dedicated network infras-
tructure, reflecting its design focus on delivering superior
performance. Over the years, InfiniBand has significantly
evolved in terms of bandwidth capabilities, advancing from
EDR (Enhanced Data Rate) at 100 Gbps to HDR (High Dy-
namic Range) at 200 Gbps, and more recently to NDR (Next
Data Rate) at 400 Gbps per link [126]. RoCE leverages the
existing Ethernet infrastructure to deliver RDMA capabili-
ties. This approach offers a more cost-effective and easier-
to-deploy solution, particularly in data centers that already
utilize Ethernet. RoCE is available in two versions: RoCE-v1
[52], which operates as an Ethernet link layer protocol, and
RoCE-v2 [53], which operates over UDP. Industry leaders
such as ByteDance and Meta have employed these technolo-
gies to scale LLM training. Another RDMA protocol, the
Internet Wide Area RDMA Protocol (iWARP) [54], enables
RDMA over TCP/IP networks. However, due to its compar-
atively limited performance, iWARP is not commonly used
for distributed LLM training [127].

3.2.3 Network Topology
In LLM training clusters, the network architecture is struc-
tured into frontend and backend components (Fig. 3). The



7

Fig. 6: Four typical network topologies in large-scale GPU clusters: Clos topology, Dragonfly+ topology, rail-optimization
topology, and rail-only topology.

frontend network handles a variety of traffic, such as job
management, model inference, and storage activities, while
the backend network is dedicated to the high-volume traffic
generated during the training process. Our primary focus in
optimizing LLM training lies in improving the performance
and efficiency of this backend network, so as to scale AI
accelerators to tens of thousands.

HPC Network Topology. Conventional topologies for HPC
environments can also be used in AI clusters for distributed
training, such as Clos [55], BCube [56], DCell [57], Jellyfish
[58], Torus [59], Dragonfly [60] and Dragonfly+ [61]. The
Clos network architecture, commonly known as a Fat-Tree
topology, is widely used in LLM training clusters. In a Clos-
based cluster, each server, equipped with one or more NICs,
is organized into racks connected to leaf switches. These
leaf switches link to spine switches, providing inter-rack
connectivity and forming a pod. The pods are further inter-
connected with core switches, facilitating any-to-any com-
munication across servers within the cluster. For example,
Meta’s last-generation GPU cluster architecture, supporting
up to 24,000 GPUs, consists of eight pods with full-fat band-
width between them and use a 7:1 oversubscription ratio on
the core layer [9]. Meta uses 24,000 GPUs to this cluster for
training Llama 3 405B.

Training-Optimized Topology. Many network topologies
are co-designed with distributed training algorithms. The
rail-optimized topology [62] enhances the connection from
GPUs to leaf switches. Within each rail, GPUs that share the
same index across different servers are interconnected via
the same leaf switch. This configuration improves collective
communication performance by reducing network interfer-
ence between data flows. The SuperPod architecture utilizes

a rail-optimized network and is capable of connecting over
16,000 GPUs [128]. ByteDance employs a three-layer rail-
optimized network to connect more than 10,000 GPUs in
its MegaScale system design [71]. However, rail-optimized
network designs could be less efficient because they neces-
sitate connecting GPUs to distant switches, which requires
costly and power-hungry optical transceivers. These optical
components increase power consumption and heat, lead-
ing to higher rates of network failures, which is significant
for distributed LLM training. Alibaba further optimizes the
rail-optimized topology with a 2-tier, dual-plane architec-
ture named HPN [63]. This architecture employs the latest
51.2Tbps single-chip switch and supports 1,000 GPUs in a
tier1 network and up to 15,000 GPUs within one pod.

The network traffic analysis of GPT/OPT-175B model
training reveals that 99% of GPU pairs do not carry any traf-
fic, and less than 0.25% of GPU pairs handle pipeline/tensor
parallel and data parallel traffic [64]. Based on these find-
ings, the rail-only topology [64] eliminates the connection
between different rails on rail-optimized network. Each rail
is connected by a dedicated but separate Clos network.
Communication across GPUs on different rails is managed
by forwarding the data through internal chip-to-chip inter-
connects. This method could effectively reduce costs while
maintaining performance. HammingMesh [65] organizes
GPUs into groups with a 2D-torus topology and connects
these 2D-torus groups via sparsely connected switches. This
design aims to save costs without compromising train-
ing performance. Given GPUs that are only connected by
PCIe, BiGraph [129] proposes a new network architecture
that exports intra-node GPU communication to outside the
node, bypassing PCIe bandwidth bottlenecks. It features a
two-layer network interconnected via a Clos architecture,



8

with unique shortest paths for communication that support
application-controlled traffic routing.

Reconfiguable Topology. Reconfigurable network can be
dynamically adjusted to optimize communication patterns
for improving the training performance. They typically uti-
lize optical switching and customized configurations to im-
prove bandwidth utilization, flexibility, and scalability of
the network infrastructure. Driven by Silicon Photonic (SiP)
interfaces, SiP-ML [66] advances two principal architec-
tures: SiP-OCS and SiP-Ring. SiP-OCS incorporates a fully
connected configuration that maximizes the bandwidth by
employing commercially accessible optical circuit switches,
linking GPUs to all switches via Tbps SiP interfaces. Con-
versely, the SiP-Ring utilizes a switchless ring configuration,
reducing the reconfiguration latency by integrating micro-
ring resonators within the SiP interfaces. Wang et al. pro-
posed TopoOpt [67] for co-optimizing the network topology
and parallelization strategies in distributed training. This
approach not only optimizes the computational and com-
munication demands but also addresses the physical layer
of network topology. TPUv4 [42] features Optical Circuit
Switches (OCS), allowing for dynamic reconfiguration of
the 3D-Torus based interconnect topology, optimizing the
data flow for the varied and intensive communication pat-
terns that characterize LLM training. For instance, with 512
chips, TPUv4 offers flexibility in 3D-Torus topologies such
as 4x4x32 or 8x8x8.

3.2.4 Load Balancing & Congestion Control

Load Balancing. The network traffic of LLM training is
characterized by a small number of elephant flows. Specifi-
cally, LLM training demonstrates periodic bursts of network
traffic due to gradient synchronization [63]. Each burst de-
mands significant network bandwidth. Moreover, each com-
pute node involved in LLM training generates very few con-
nections [63]. The conventional load-balancing technique,
ECMP (Equal-Cost Multi-Path routing) [68], uses hash al-
gorithms to evenly distribute traffic across equivalent paths,
such as those from leaf switches to spine switches in a Clos
topology. However, this hash-based scheme is inefficient for
handling LLM training traffic, which consists of a small
number of elephant flows. When multiple elephant flows
are routed to the same link, it can result in congestion and
high latency.

Various strategies have been developed to address the
load balancing challenges in large-scale GPU clusters. Dur-
ing the Llama 3 405B training, the collective library estab-
lishes 16 network flows between two GPUs, rather than
a single flow, thereby reducing traffic per flow and en-
hancing load balancing opportunities [9]. Additionally, the
Enhanced-ECMP (E-ECMP) protocol effectively distributes
these 16 flows across different network paths by hashing
on additional fields in the RoCE header of packets. Packet
spraying [69] distributes packets from a flow across all avail-
able parallel links, which can lead to out-of-order packets.
NICs need to process out-of-order RDMA packets. Based
on the traffic pattern of LLM training, Ethereal [70] demon-
strates that greedily assigning paths to each flow can uni-
formly distribute the load across all network paths and
resolve the ECMP hash conflict problem. In a large-scale

GPUs cluster, HPN [63] achieves efficient load balancing by
identifying precise disjoint equal paths and balancing the
load within the collective communication library. MegaScale
[71] shows that a rail-optimized topology can also mitigate
ECMP hashing conflicts.

Congestion Control. Lossless transmission is crucial in
RDMA clusters. Priority-based Flow Control (PFC) [72] is
a flow control mechanism that prevents packet loss. When
congestion occurs in a PFC-enabled queue on a downstream
device, the device instructs the upstream device to halt traf-
fic in the queue, thereby ensuring zero packet loss. Since
PFC is a coarse-grained mechanism, it can lead to head-of-
line blocking [130], which significantly diminishes network
throughput. To address these challenges, various general-
purpose congestion control schemes have been developed.
These techniques include TIMELY [73], Data Center Quan-
tized Congestion Notification (DCQCN) [75], [76], Swift
[74], High Precision Congestion Control (HPCC) [77], Edge-
Queued Datagram Service (EQDS) [78], and Robust Conges-
tion Control (RoCC) [79]. These schemes monitor network
congestion, adjust data rate to alleviate congestion, and re-
cover the rate to minimize throughput reduction.

When there are concurrent training jobs, many conges-
tion control schemes leverage the bursty and periodic traffic
patterns to interleave the network traffic effectively. MLTCP
[80] interleaves the communication phases of jobs that com-
pete for bandwidth based on a key insight: training flows
should adjust their congestion window size based on the
number of bytes sent in each training iteration. CASSINI
[81] optimizes job placement on network links by consider-
ing the communication patterns of different jobs. MLT [82]
leverages the characteristics of LLM training, where the
gradients of earlier layers are less important than those of
later layers, and larger gradients are more significant than
smaller ones. Consequently, in the event of communication
congestion, MLT prioritizes queuing or discarding packets
based on the importance of the gradients within them at the
switch level to mitigate communication congestion issues.

3.3 Storage
The storage system plays a critical role in distributed LLM
training and need to meet several key requirements. Firstly,
it should align with the computing power of GPUs to maxi-
mize their utilization and avoid resource wastage caused by
storage bottlenecks. Secondly, it should support the storage
of large-scale structured and unstructured training datasets
and be scalable in distributed processing environments. Ad-
ditionally, the storage and retrieval of model checkpoints
present challenges in LLM training, requiring the system to
meet the writing and reading bandwidth dictated by the
model size and training duration. Lastly, the storage sys-
tem should satisfy traditional enterprise-level requirements,
such as data protection, high availability, and security.

3.3.1 Storage Systems for Checkpoint
The model checkpoint size is enormous in LLM training.
As the number of parameters increases, so does the volume
of data that needs to be written, demanding greater write
bandwidth from the storage system. For example, the check-
point size is 980GB for an LLM with 70B parameters. Nu-
merous storage systems have been deployed in large-scale



9

GPU data centers to manage model checkpoints. Meta’s
distributed filesystem, Tectonic [83], enables thousands of
GPUs to save and load model checkpoints simultaneously,
providing efficient and scalable storage solutions for exten-
sive training operations [131]. At ByteDance, HDFS [84] is
employed for centralized model checkpoint maintenance,
ensuring consistency and reliability at scale [71]. To miti-
gate bandwidth bottlenecks during checkpoint recovery, a
common approach designates a single worker to read the
checkpoint partition from HDFS and then broadcast it to
other workers sharing the same data. Distributed object
stores, such as Ceph Object Storage [85], offer easier scala-
bility. This advantage stems from their lack of a hierarchical
directory tree or namespace, simplifying consistency main-
tenance. Due to these benefits, object stores have become
widely adopted for model checkpoint storage.

3.3.2 Storage Systems for Training Data
The raw dataset for LLM training is substantial. LLaMA 3
was trained on over 15 trillion tokens, which is more than
seven times larger than LLaMA 2’s dataset [6]. Each token
requires about 2 bytes, equaling roughly 30 TB of data.
Preparing datasets for training involves extensive prepro-
cessing steps, including data crawling and cleaning, re-
quiring significant experimentation. Typically, the data pro-
cessed during these steps exceeds 100 times the final size
of the training dataset [132]. For instance, the WanJuan-CC
dataset [132] selectively extracts approximately 68 billion
documents, generating around 1 trillion high-quality tokens,
equivalent to a data size of 2 TB, after discarding 99% of the
raw data. Therefore, the total data volume for LLM training
is expected to exceed tens of PB.

Parallel file systems such as Lustre [86], GPFS [87],
and BeeGFS [88] are frequently deployed on leading high-
performance computing systems to ensure efficient I/O,
persistent storage, and scalable performance. These systems
are also widely used in training clusters for data loading,
providing the necessary infrastructure to handle large-scale
training data efficiently. Additionally, it is crucial for file sys-
tems to enable engineers to perform interactive debugging
on jobs utilizing thousands of GPUs, as code changes need
to be immediately accessible to all nodes [131].

During the training of most LLMs, each token is typically
encountered only once. However, employing data caching
remains crucial to mitigate I/O bottlenecks during data
loading. This strategy involves prefetching training data
from slower backend storage to faster cache storage. Alluxio
[89] and JuiceFS [90] enhance LLM training by efficiently
caching training data from underlying storage systems such
as HDFS or object storage. Quiver [91] supports the trans-
parent reuse of cached data across multiple jobs and users
operating on the same dataset. Fluid [92] leverages Alluxio
for data caching, incorporating a mechanism that enables
on-the-fly autoscaling of the cache based on I/O conditions.

3.4 Scheduling
LLM training workloads generally run on large-scale multi-
tenant infrastructures (e.g., GPU clusters, public clouds)
where users share cluster resources. Effective scheduling
mechanisms are crucial for managing these workloads, en-
suring efficient resource utilization and task execution [133].

Unlike task-level scheduling (e.g., pipeline scheduling [134]–
[136]), which focuses on fine-grained optimization of single-
job execution (§4.1.3), cluster-level scheduling aims to op-
timize resource allocation and task scheduling across the
entire cluster. We categorize existing cluster-level scheduling
systems into two types, workload scheduling and resource
scheduling, according to their primary optimization aspects.

3.4.1 Workload Scheduling
Schedulers tailored for DL training workloads have been ac-
tively explored in recent years [93]–[95], [137]–[141]. To en-
hance resource utilization, three advanced features are com-
monly implemented: (1) heterogeneous-aware schedulers (e.g.,
Gavel [96], Gandivafair [97]) focus on optimizing job alloca-
tion across different GPU generations; (2) job-packing sched-
ulers (e.g., FGD [98], Lucid [99]) enable fine-grained GPU
sharing to fully facilitate hardware capability; (3) adaptive-
scaling schedulers (e.g., Pollux [100], Sia [101]) dynamically
adjust the number of GPUs as well as the training hyper-
parameters to accelerate training progress. However, these
schedulers are designed for general DL workloads and may
not be directly applicable to LLMs due to the unique char-
acteristics of LLM workloads [23].

To better manage LLM workloads, several recent stud-
ies have proposed systems tailored to LLMs. Crius [102]
jointly considers hybrid parallelism (§4.1) and hardware-
affinity within heterogeneous clusters. It investigates the
workflow efficiency of integrating adaptive parallelism con-
figuration at the cluster scheduling level, offering significant
opportunities to improve the efficiency of training multiple
LLMs concurrently. To achieve highly efficient hyperparam-
eter tuning for LLMs, Hydro [103] scales down the model to
a smaller surrogate model for hyperparameter search, and
then fuses multiple models into a single entity to enhance
the hardware utilization. Additionally, Hydro extends the
resources for tuning workloads by interleaving them with
pipeline-enabled LLM pretraining tasks, effectively utiliz-
ing the pipeline bubbles. Acme [23] further characterizes
the workload mixture of the LLM development workflow
and proposes a system to efficiently schedule associated
jobs related to LLM training, including decoupled evalua-
tion scheduling for timely model quality feedback as well
as LLM-involved failure diagnosis and automatic recovery.

3.4.2 Resource Scheduling
In addition to workload scheduling, associated resource
scheduling (e.g., CPU, memory, and networking) is another
critical aspect of cluster-level management. For networking,
Cassini [81] enables the interleaving of bandwidth demands
during the up and down phases of different jobs by using
an affinity graph to determine time-shift values for adjust-
ing communication phases. HIRE [104] introduces an inno-
vative in-network computing scheduling system for data-
center switches, significantly reducing the network detours
and tail placement latency. For storage, SiloD [105] treats
data cache and remote I/O as first-class resources for joint
allocation, showing significant throughput improvements.
For CPU and memory, Synergy [106] enhances training effi-
ciency by optimizing CPU core allocations instead of relying
on GPU-proportional allocation. Additionally, some works
focus on energy conservation. EnvPipe [107] leverages the



10

Pa
ra

lle
lis

m
Sc

he
m

es
fo

r
LL

M
Tr

ai
ni

ng

Hybrid Parallelism

Data Parallelism PyTorch-DDP [142], Horovod [143], Sharded Weight Update [144],
ZeRO-3 [145], FSDP [146] MiCS [147]

Tensor Parallelism Megatron-TP [20], Optimus [148], Tesseract [149], 3-D TP [150]

Pipeline Parallelism

Pipeline Bubble: GPipe [151], PipeDream [134], [135],
DAPPLE [152], Interleaved 1F1B [153], TeraPipe [154], Tessel [155],
Zero Bubble [156], Chimera [136], Hanayo [157], Seq1F1B [158],
Breadth-First [159], DynaPipe [160], DISTMM [161], GraphPipe [162]
Memory Imbalance: BPipe [163], MPress [164], mCAP [165],
Chimera [136], Hanayo [157], V-Shape [166], Varuna [167],
AdaPipe [168]

Sequence Parallelism

Ring Self-Attention [169], Megatron-SP [170], USP [171],
DeepSpeed-Ulysses [172], Context Parallel [173], LoongTrain [174],
Blockwise Ring Attention [175], DistFlashAttn [176], DSP [177],
Striped Attention [178], BurstAttention [179], WallFacer [180]

Expert Parallelism

Sparse Activation: Gshard [15], Switch transformer [181], Tutel [182],
Deepspeed-MoE [183], Deepspeed-TED [184], Megablock [185],
ScatterMoE [184]
Communication Optimization: PipeMoE [186], ScheMoE [187],
Lina [188], Janus [189], TA-MoE [190]
Load Balance: FasterMoE [191], [192], SmartMoE [193],
FlexMoE [194], Prophet [195]

Auto Parallelism

General Framework

Mesh-TensorFlow [196], GSPMD [197], OptCNN [198], Alpa [21],
FlexFlow [199], Tofu [200], HyPar [201], AutoMap [202], Slapo [203],
TensorOpt [204], PipeDream [134], DAPPLE [152], AutoPipe [205],
Device Placement [206]–[208], Piper [209], Unity [210], Aceso [211],
PartIR [212], nnScaler [213], OneFlow [214], AutoDDL [215]

Transformer-Specific DeepSpeed-Autotuning [216], Galvatron [217], Merak [218],
Colossal-Auto [219], Galvatron-BMW [220]

Heterogeneous Parallelism

Heterogeneous Hardware
HetPipe [221], AccPar [222], Whale [223], AMP [224],
Pathways [225], HPH [226], SDPIPE [227], HAP [228],
PipePar [229], Yuan et al. [230], SWARM [231], FusionAI [232]

Heterogeneous Model
DeepSpeed-Chat [233], HuggingFace TRL [234], OpenRLHF [235],
Adpative Placement and Parallelism [236], ReaLHF [237],
PUZZLE [238]

Fig. 7: Studies on parallelism schemes for distributed LLM training.

bubble time in the pipeline parallelism, stretching the exe-
cution time of pipeline units by lowering the SM frequency
to save energy. Zeus [108] automatically configures the batch
size and GPU power limit for improving energy efficiency
during training. Perseus [109] introduces an efficient graph
cut-based iterative algorithm to obtain the iteration time-
energy Pareto front for large model training job.

4 PARALLELISM SCHEMES FOR LLM TRAINING

The continual growing scales of LLMs demand substantial
computational resources and memory capacity. Distributed
training, leveraging large-scale HPC clusters, has emerged
as a crucial approach to efficiently train these models. In
this section, we investigate various parallelism schemes pro-
posed to enhance the utilization of HPC clusters for LLM
training. We categorize these approaches into three main
groups: Hybrid Parallelism, Auto Parallelism, and Hetero-
geneous Parallelism. Hybrid Parallelism combines multi-
ple handcrafted parallelization strategies, such as data par-
allelism, tensor parallelism, pipeline parallelism, sequence

parallelism, and expert parallelism. Auto Parallelism au-
tomatically determines the optimal parallelization strategy
based on the model and hardware characteristics. Hetero-
geneous Parallelism exploits the heterogeneity in hardware
or model for efficient training. This includes techniques that
leverage different types of accelerators or leverage the het-
erogeneity within a single model (e.g., RLHF training) to
improve the overall training efficiency on HPC clusters.

Most of today’s state-of-the-art parallelization strategies
adopt a Single Program Multiple Data (SPMD) program-
ming model, akin to the MPI paradigm [239], where the
same program runs across multiple processors, each work-
ing on different pieces of data [225]. For example, data,
model and sequence parallelism utilizes the SPMD pro-
gramming model. This approach ensures uniformity and
consistency in operations, making it well-suited for large-
scale, distributed training environments. Some strategies ex-
plore to break the restriction of SPMD and further improve
the resource utilization with the Multiple Program Multiple
Data (MPMD) model, where different programs (or different
parts of a program) run on different processors, handling



11

different parts of the data or model [225]. For example,
pipeline parallelism runs different parts of an LLM on differ-
ent devices. In addition, auto parallelism and heterogeneous
parallelism can leverage both SPMD and MPMD models to
increase the resource utilization. Therefore, we discuss these
approaches according to the dimensions along which paral-
lelism occurs and whether the computing devices employed
are homogeneous or heterogeneous, rather than focusing on
the underlying programming models.

4.1 Hybrid Parallelism
Hybrid parallelism typically combines multiple handcrafted
parallelization strategies to partition different parallelizable
dimensions of an LLM. These strategies include data paral-
lelism, tensor parallelism, pipeline parallelism and sequence
parallelism, as illustrated in Fig. 8. The combination of data
parallelism, tensor parallelism, and pipeline parallelism is
also referred to as 3D parallelism.

4.1.1 Data Parallelism
Data parallelism is the most commonly used parallelization
strategy for distributed training due to its high scalability
and ease of implementation. It follows the Single Program
Multiple Data (SPMD) programming model. Data paral-
lelism partitions the input training data along the batch di-
mension, where each GPU processes its assigned segment of
data, as shown in Fig. 8(a). Throughout the training process,
the data first undergoes forward computation with the full
model weights layer by layer, and then performs backward
computation in the reverse order. Each layer produces gradi-
ents that will be aggregated across all GPUs using collective
communication operations for optimizer updates.

Data parallelism incorporates various sharding strate-
gies, which significantly influence the memory footprint and
communication overhead. Supposing the global world size
is W (i.e. the number of devices), a sharding factor F is
introduced to control the sharding strategy used [146], de-
fined as the number of devices across which parameters are
partitioned (1 ≤ F ≤ W ). We have the following scenarios.
Full replication (F = 1): this sharding strategy is sim-
plified as vanilla data parallelism. Pytorch-DDP [240] and
Horovod [143] fully replicate the model across all devices
and use All-Reduce for gradient aggregation. They also di-
vide the gradients into small buckets to overlap the gradient
communication with backward computation.
Full sharding (F = W ). This sharding strategy comes with
the lowest memory consumption but the most communi-
cation overhead (1.5× over vanilla data parallelism). Full
sharding strategy fully shards the model, where each device
holds only 1

W of the model parameters. The full weights
and gradients are communicated and recovered on-demand
before the computation, and immediately discarded after-
wards. ZeRO-3 [145] employs per-parameter sharding to
shard the full model and utilizes All-Gather and Reduce-
Scatter for unsharding and sharding communication, re-
spectively. Sharded Weight Update [144] also employs per-
parameter sharding but focuses more on sharding the re-
dundant parameter update computation across all the de-
vices. FSDP (Fully Sharded Data Parallelism) [146] achieves
the same functionality by sharding model parameters in the
grain of module units and provides more user-friendly API.

Hybrid sharding (1 < F < W ). In this strategy [146], all the
devices are divided into a N ×M device mesh. The model
parameters are sharded along the N dimension of the mesh,
and replicated along the M dimension. MiCS [147] invokes
All-Gather collective to gather the sharded parameters and
All-Reduce to aggregate the gradients. FSDP [146] replaces
the All-Reduce with Reduce-Scatter to reduce the memory
and communication overhead. Compared to full replication
and full sharding, hybrid sharding is more flexible to pro-
vide a trade-off between memory consumption and com-
munication overhead via adjsuting F based on the model
architecture and hardware constraints.

4.1.2 Tensor parallelism
Tensor parallelism (Fig. 8(b)), also known as intra-layer
model parallelism, is a technique proposed to enable the
training of LLMs across multiple GPUs. It partitions the pa-
rameter tensors of each layer along multiple dimensions, ef-
fectively distributing the model parameters across the avail-
able GPUs. Tensor parallelism communicates intermediate
activation tensors, the size of which is much smaller than
that of parameters and gradients communicated in data
parallelism, except for long context LLM training scenarios.
However, in tensor parallelism, it is challenging to overlap
the communication with computation, necessitating the use
of high-bandwidth connections. Consequently, tensor paral-
lelism is more commonly employed in a single GPU node.

Tensor parallelism can be divided into 1-D [20], 2-
D [148], 2.5-D [149] and 3-D [150] parallelism according to
the dimensionality of the partition. There are two parame-
ter matrices in both the MLP and self-attention module of
transformer-based LLMs. Megatron-LM [20] first adopts 1-
D tensor parallelism to partition the first parameter matrix
along its column, and the second parameter matrix along its
row. It replicates the input and output tensors of each par-
titioned module and introduces two All-Reduce collective
communication across all GPUs to fit an LLM into multiple
GPUs. Inspired by Scalable Universal Matrix Multiplication
Algorithm (SUMMA) [241] and Cannon’s algorithm [242]
for 2-D parallel matrix multiplication, Optimus [148] fur-
ther partitions the input and parameter tensors in 2 di-
mensions to improve the communication and memory ef-
ficiency of 1-D tensor parallelism. Tesseract [149] extends
the 2.5-D matrix multiplication method [243], which is pro-
posed to improve the efficiency of Cannon’s algorithm, to
LLM training and proposes the 2.5-D tensor parallelism
to overcome the abundance of unnecessary communication
resulting from the increasing model size. 3-D tensor par-
allelism [150] adopts and improves the 3-D parallel ma-
trix multiplication algorithm [244] for linear operations and
achieves a perfect load balance across multiple devices for
LLM training.

4.1.3 Pipeline Parallelism
Pipeline parallelism (Fig. 8(c)) [151], also known as inter-
layer model parallelism, is proposed to accommodate large
models across multiple GPUs, particularly across different
nodes. Pipeline parallelism partitions the layers of a model
into multiple stages, where each stage consists of a consec-
utive set of layers in the model and is mapped to a set of
GPUs. Unlike tensor parallelism, which typically demands



12

Fig. 8: An example of 3D-parallelism with data parallelism, tensor parallelism, and pipeline parallelism.

high-bandwidth connections like NVLink for communica-
tion, pipeline parallelism only necessitates the exchange of
intermediate tensors at designated cutting points, result-
ing in less frequent communication requirements. There-
fore, pipeline parallelism is suitable for scaling up the LLM
training across multiple GPU nodes that are connected with
small bandwidth. For example, Strati et al. [245] adopt
pipeline parallelism to fully utilize geo-distributed resources
to overcome the shortage of GPUs. Due to the data de-
pendency of different stages, pipeline parallelism typically
splits the input data into multiple micro-batches for pipelin-
ing to enable the efficient training of giant models. However,
it comes with two significant problems. First, the pipeline
bubble problem reduces the utilization of GPUs due to the
time spent on waiting for the output of the previous stage.
Second, there exists memory consumption imbalance across
different stages since the former stages need to hold more
active micro-batches than the latter for better pipelining and
higher utilization. We detail each problem below.

Pipeline Bubble. Efficient micro-batch scheduling algo-
rithms are proposed to reduce pipeline bubbles. GPipe [151]
introduces a fill-drain schedule that injects all micro-batches
at once for forward pass execution, followed by backward
passes. Gpipe incurs significant pipeline bubbles due to the
warm up and cool down of both forward and backward
passes. PipeDream [134], [135] introduces a 1F1B (1 For-
ward 1 Backward) schedule, which executes the backward
pass of a micro-batch as soon as the corresponding forward
pass has completed, to reduce the pipeline bubbles in the
asynchronous scenario. DAPPLE [152] employs an early
backward schedule to first inject a fixed number of micro-
batches at the beginning of each stage and then interleave
forward and backward passes with round robin. Interleaved
1F1B [153] adapts the 1F1B schedule but assigns multiple
stages to each GPU (i.e. looping pipeline placement). The
pipeline bubble is reduced at the cost of higher commu-
nication and peak memory consumption. Chimera [136]
introduces a bidirectional pipeline to reduce bubbles with
weight duplication. Hanayo [157] further proposes a wave-
like pipeline that assigns multiple symmetrical stages to one
GPU to improve the pipeline utilization. Zero bubble [156]
splits the backward computation into two parts: activation

and parameter gradient computation. It schedules the for-
ward and activation gradient computation with 1F1B and
then fills the bubbles with parameter gradient computation,
which reduce bubbles with higher peak memory consump-
tion. Breadth-First [159] runs all micro-batches at once in
looping pipeline placement to reduce the communication
overhead when combined with sharded data parallelism.
TeraPipe [154] splits the micro-batch along the sequence di-
mension and exploits more fine-grained token parallelism
to reduce pipeline bubbles. However, The memory over-
head of TeraPipe is large since it is based on the GPipe
schedule. Seq1F1B [158] splits the sequence into chunks
and utilizes the 1F1B schedule to reduce the peak mem-
ory consumption while achieving low pipeline bubble rates.
DynaPipe [160] uses a dynamic micro-batching approach to
the multi-task training of LLMs with variable-length input.
It introduces a memory-aware adaptive scheduling algo-
rithm and ahead-of-time communication planning to fur-
ther reduce the pipeline bubble rates. Tessel [155] is a two-
phase approach, including repetitive pattern construction
and schedule completion, to automatically search for the
efficient pipeline schedule for a specified partition strategy.
DISTMM [161] launches doubled micro-batches to bypass
the dependency barrier caused by the large batch require-
ment of multi-modal training, thus reducing idle cycles.
GraphPipe [162] preserves the DNN graph topology and
partitions it into stages that can be concurrently executed to
improve pipeline utilization and reduce memory consump-
tion.

Memory Imbalance. Pipeline parallelism typically injects
more micro-batches into the beginning stages to improve
the pipeline utilization, resulting in higher activation mem-
ory consumption in these stages. To resolve this problem,
BPipe [163] and MPress [164] employ D2D (device to de-
vice) transfer to swap intermediate activation tensors from
high-load GPU to light-load GPU during runtime. MPress
also combines the activation recomputation to reduce the
memory footprint. Chimera [136] introduces a bidirectional
pipeline that combines two pipelines in different directions
together to achieve more balanced memory consumption.
Each GPU holds two symmetric stages, leading to weight
duplication. Hanayo [157] turns the bidirectional pipeline



13

into two data parallel pipelines to remove the weight du-
plication and achieves a balanced memory consumption
by assigning multiple stages to one GPU symmetrically.
V-Shape [166] partitions the model into stages twice the
number of devices, where the two halves of stages are
placed in reverse order. By varying the offsets between
stages, V-Shape makes a trade-off between peak memory
consumption and bubble utilization. mCAP [165] utilizes an
incremental-profiling approach to partition models evenly
across GPUs with respect to peak memory usage.

Peak memory consumption limits the number of active
micro-batches in pipeline parallelism, thus its efficiency.
Activation recomputation can be employed to reduce the
peak memory consumption effectively. Varuna [167] com-
bines pipeline parallelism and activation recomputation to
achieve this goal. It designs a static rule-based schedule enu-
merated for a given pipeline with an opportunistic policy to
hide jitter and reduce bubbles. The static schedule is gen-
erated based on constraints including activation recompu-
tation timing, activation memory management, and back-
ward computation prioritization. To resolve the memory
imbalance with low recomputation overhead, AdaPipe [168]
adopts adaptive recomputation to support different recom-
putation strategies for different stages, and adaptive parti-
tioning based on the 1F1B schedule to balance the computa-
tion of each stage.

4.1.4 Sequence parallelism
The context window of today’s LLMs grows rapidly, and
the most powerful LLM can support millions of tokens [7].
Such ultra long sequence leads to significant memory and
computation requirements for LLM training: linearly in-
creasing memory footprint of activations and quadratic
complexity of attention mechanism. Recomputing activa-
tions in the backward can reduce the peak memory con-
sumption but also introduce significant overheads (30%
with full recompute). Large tensor parallelism degree incurs
significant communication overhead. Sequence parallelism
(Fig. 8(d)) [169], [170] is proposed to accommodate the long
sequence training and distribute the computation in multi-
ple GPUs efficiently within the memory capacity. It divides
the input data into multiple chunks along the sequence di-
mension and each chunk is fed to one GPU for computation.
Since sequence parallelism replicates the model parameters,
it is typically combined with tensor and pipeline parallelism
to scale up the LLM training. When used together with ten-
sor parallelism, sequence parallelism distributes the mem-
ory and computation of attention on multiple GPUs, but
incurs redundant memory consumption and computation
in the non-tensor parallel regions of a transformer layer.
Megatron-SP [170] splits these computations along the se-
quence dimension to reduce redundant the activation com-
putation and memory consumption without increasing the
communication.

Although sequence parallelism partitions the memory,
computation and communication across multiple GPUs, the
quadratic causal attention still presents remarkable chal-
lenges in training efficiency, including the key-value ten-
sor communication overhead, IO-awareness attention com-
putation overhead and load imbalance among GPUs due
to the causal attention mask. Most sequence parallelism

approaches for attention are ring-based [169], [173], [175],
[176], [178], [179]. Ring Self-Attention [169] leverages se-
quence parallelism and calculates the self-attention with
ring-style communication to scale up the context window
of LLM training. It first transmits the key tensors among
GPUs to calculate the attention scores in a circular fashion,
and then calculates the self-attention output based on the
attention scores and value tensors transmitted in a similar
fashion. DistFlashAttn [176] transmits the key-value ten-
sor chunks concurrently to utilize IO-awareness FlashAtten-
tion [115] kernel and balance the computation of different
GPUs by filling the idle cycles of earlier tokens with later
tokens. Megatron Context Parallel [173] also leverages the
FlashAttention kernel and removes the unnecessary com-
putation resulted from low-triangle causal masking. It fur-
ther balances the computation among GPUs by exchanging
half of the chunk with the symmetric GPU. DistFlashAttn
and Context Parallel also overlap the key-value tensor
communication and attention computation with separate
CUDA streams. Striped Attention [178] resolves the imbal-
ance by assigning each GPU a subset of tokens distributed
uniformly throughout the sequence, instead of contiguous
chunks. BurstAttention [179] computes the attention with
FlashAttention on each GPU and utilizes double buffers
to overlap the communication and computation. Blockwise
Ring Attention [175] extends Ring Self-Attention [169] to
blockwise attention, which computes the attention in small
blocks to reduce the memory footprint. Inspired from N-
body simulation, WallFacer [180] first divides GPUs into
subgroups and replicates query and key-value tensors in
each subgroup via asynchronous AllGather. The attention
computation leverages multiple ring-style P2P communica-
tion to enhance efficiency. A final asynchronous ReduceScat-
ter is needed to distribute the attention output.

DeepSpeed-Ulysses [172] differs from previous ring-
based approaches by splitting the head dimension instead
of sequence dimension and leverages All-to-All to shift the
partition dimension from sequence to head. DeepSpeed-
Ulysses can be seamlessly combined with existing atten-
tion implementation, e.g., FlashAttention, and the work-
load among GPUs is naturally balanced. However, the par-
allelism degree of DeepSpeed-Ulysses is restricted by the
number of heads, especially for LLMs using MQA [11]
and GQA [12]. LoongTrain [174] and USP [171] are con-
current work that integrate the advantages of DeepSpeed-
Ulysses and Ring Attention. They organize the GPUs into
2-dimension mesh, forming hybrid ulysses- and ring-style
process groups. During training, they first perform All-to-
All among ulysses groups to switch partition from sequence
to head dimension, and then perform attention computation
with Ring-Attention among ring groups. LoongTrain fur-
ther proposes Double-Ring-Attention to fully utilize avail-
able bandwidth for inter-node communication and over-
lap communication with computation. DSP [177] dynami-
cally switches the parallelism dimension according to the
computation stage in multi-dimensional transformers, like
DiT [246].

4.1.5 Expert Parallelism
The Mixture-of-Experts (MoE) is currently the most pop-
ular sparse model in LLMs. While significantly increasing



14

Fig. 9: Expert parallelism. The dotted line highlights the
MoE components within the transformer model, where each
device maintains one expert for expert parallelism and col-
laborate based on All-to-All communication.

the number of parameters in LLMs, MoE does not greatly
increase the computational cost with conditional computa-
tions [247]. The basic framework of MoE, as shown in Fig. 9,
consists of multiple expert networks that handle different
subsets of training data and a gate network that applies
routing algorithm to assign the input tokens to different
experts networks. MoE enables the training of large models
with parameters beyond the trillion scale and is claimed to
be used in popular LLM models such as Mixtral 8x7B [248]
and DeepSeek2 [13].

Sparse Activation. With the increasing model size, all ex-
perts cannot be accommodated and trained on a single
device. Therefore, GShard [15] extends the idea of MoE
to Transformers in distributed settings, where experts are
distributed across different workers and collaborates with
All-to-All communication, as shown in Fig. 9. Subsequent
research for expert parallelism generally follows the same
paradigm. For example, the Switch Transformer [181] in-
corporates the design of distributed MoE training on the
T5 model. But unlike the top-2 routing algorithm used
in GShard, the Switch Transformer routes each token to
only the top-1 expert to maximize computational efficiency.
Additionally, DeepSpeed-MoE [183] proposes a new dis-
tributed MoE architecture that applies shared experts in
each worker and places more experts in deeper layers to
balance communication costs with training accuracy.

Expert parallelism can be effectively integrated with
conventional 3D parallelism. For example, GShard, Switch

Transformer, and DeepSpeed-MoE all treat expert paral-
lelism as an orthogonal dimension of hybrid parallelism.
For efficient hybrid training, DeepSpeed-TED [249] presents
a hybrid parallel algorithm that combines data, tensor, and
expert parallelism to enable the training of MoE models.
The authors partition the MoE parameters into “tiles” of a
predefined size to avoid high optimizer memory spikes and
propose communication optimizations like Duplicate Token
Dropping (DTD) and activation checkpointing to eliminate
duplicate data in All-to-All communication. However, it is
challenging to choose the optimal hybrid parallelism plan
due to the dynamic nature of MoE, and switching between
different parallelism strategies during runtime also incurs
substantial overhead. Therefore, some research like Tutel
[182] designs an adaptive parallelism switching algorithm
that applies the same distribution model layout for all pos-
sibly optimal strategies, and can dynamically switch the
parallelism strategy at every iteration without any extra
overhead.

Since General Matrix Multiplications (GeMMs) require
the size of all experts’ inputs to be consistent, existing MoE
training frameworks often perform token dropping and
padding to match the same expert capacity, which wastes
computation. Megablocks [185] optimizes grouped GeMMs
by implementing Block Sparse Matrix Multiplication and
supports different batch sizes for expert computations in
a single kernel to avoid unnecessary token dropping in
MoE training. Another framework that supports grouped
GeMMs is ScatterMoE [184], which implements the Paral-
lelLinear kernel that fuses grouped GeMMs and scattered
read and write operations to reduce the memory footprint
for top-k (k ≥ 2) gating.

Communication Optimization. All-to-all communication
in expert parallelism can seriously affect the training effi-
ciency of MoE, especially in poor network environments.
Existing distributed training systems try to optimize the
performance of MoE by overlapping communication tasks
with computing tasks so that some communication costs
can be hidden. For example, Tutel [182] divides the input
tensors into groups along the expert capacity dimension and
overlaps computation and communication among different
groups to hide All-to-All overhead. FasterMoE [191], [192]
uses a similar strategy to Tutel but splits the tensor along the
expert dimension. Additionally, Tutel [182] also optimizes
the All-to-All kernel implementation by aggregating small
messages into a single large chunk inside the nodes before
exchanging data among different nodes. This optimization
is also used in FasterMoE and ScheMoe [187]. Based on
the overlap strategy in Tutel, PipeMoE [186] models the
execution time of both communication and computation
tasks based on the workloads and designs an adaptive algo-
rithm to find the optimal number of partitions to minimize
training time. ScheMoE [187] considers data compression
approaches before All-to-All communication and modular-
izes time-consuming operations, including data compres-
sion, collective communication, and expert computation.
ScheMoE then proposes an adaptive optimal scheduling al-
gorithm to pipeline communication and computing opera-
tions to improve training efficiency.

Expert parallelism usually interacts with other parallel



15

strategies in MoE training. It is possible to reduce com-
munication overhead by fine-grained task scheduling. For
example, Lina [188] analyzes the All-to-All overhead of MoE
during distributed training and inference systematically and
finds that All-to-All latency is prolonged when it overlaps
with AllReduce operations. Lina proposes prioritizing All-
to-All over AllReduce to improve its bandwidth and re-
duce its blocking period in distributed training. Addition-
ally, Lina incorporates tensor partitioning and pipelining
to perform micro-op scheduling similar to Tutel. Lina also
dynamically schedules resources based on expert popular-
ity during inference to minimize overhead. Janus [189] de-
signs a data-centric paradigm that keeps data in place and
moves experts between GPUs based on a Parameter Server.
The data-centric paradigm uses fine-grained asynchronous
communication and allows experts to move between GPUs
using non-blocking communication primitives such as pull.
Janus implements a topology-aware strategy to effectively
pull experts between nodes and supports expert prefetching
to pull all external experts to local CPU memory.

There are some research optimizes MoE training from
model-system co-design perspective. For example, TA-MoE
[190] proposes a topology-aware routing strategy for large-
scale MoE training. TA-MoE abstracts the dispatch problem
into an optimization objective to obtain the target dispatch
pattern under different topologies and designs a topology-
aware auxiliary loss based on the dispatch pattern. This
approach adaptively routes the data to fit the underlying
topology without sacrificing model accuracy.

Load Balance. Due to the sparse and conditional comput-
ing nature of MoE, a popular expert may receive more to-
kens than others in expert parallelism (usually caused by a
poor routing algorithm), leading to serious load imbalance
and affecting the training efficiency of MoE. FasterMoE [192]
proposes the shadowing experts approach, which dynam-
ically broadcasts the parameters of popular experts to all
other GPUs based on the workload of previous iterations.
By spreading the workload of popular experts across dif-
ferent devices, the shadowing experts approach reduces the
impact of skewed expert popularity. SmartMoE [193] adopts
a two-stage approach to search for the optimal parallel plan
for load balance. First, SmartMoE designs a data-sensitive
performance model that divides parallel plans into pools,
where the cost of switching parallel modes within a pool
is relatively low. Then, SmartMoE can switch to the appro-
priate parallelism (referred to as expert placement in Smart-
MoE) to keep load balance during the online stage. Flex-
MoE [194] found that the distribution of expert-to-device
mapping does not shift significantly over a short period, so
it introduces fine-grained replicated expert parallelism that
duplicates heavy experts across multiple devices. FlexMoE
monitors data workload and uses three placement adjust-
ment primitives (i.e., expand, shrink, migrate) to generate
optimal placement solutions if the balance ratio is exceeded.
Prophet [195] presents a systematic, fine-grained, and effi-
cient load balancing training method for large-scale MoE
models. Taking the MoE model, device pool, and token dis-
tribution as inputs, Prophet’s planner iteratively searches
and evaluates expert placements and finally outputs a well-
balanced expert placement. Additionally, Prophet hides the

overhead of these resource allocation operations using a
layer-wise scheduling strategy.

4.2 Auto Parallelism
Given an arbitrary DNN model and a GPU cluster, there ex-
ists a vast array of options for parallelism, encompassing the
partitioning of individual layers and their partitioning de-
grees. It is a time-consuming and knowledge-intensive pro-
cess to design handcrafted hybrid parallelism approaches
that can maximize the training efficiency, requiring expert
understanding of the model architecture, hardware char-
acteristics, and intricate trade-offs involved in paralleliza-
tion strategies. Moreover, the efficient implementation of
optimal parallelization strategies often necessitates substan-
tial human efforts. To address these challenges, auto par-
allelism emerges as a promising solution, which seeks to
automatically determine the most effective parallelization
strategy for a given DNN model on a specific GPU clus-
ter. By leveraging sophisticated algorithms and heuristics,
auto parallelism systems can analyze the model architecture,
hardware specifications, and performance characteristics to
identify the optimal combination of parallelism techniques,
such as data, tensor, and pipeline parallelism. This approach
streamlines the process of optimizing the distributed train-
ing across various models and infrastructures, enhancing
the overall efficiency and reducing the manual effort. Fur-
thermore, auto parallelism can adapt to changing hardware
configurations and model architectures, automatically ad-
justing the parallelization strategy to maintain the optimal
performance. In the following, we categorize existing auto
parallelism systems into general and transformer-specific
frameworks, according to the targeted model architecture.

4.2.1 General Framework
General auto parallelism frameworks focus on automati-
cally parallelizing general DNNs on a specific computation
cluster. These frameworks typically follow a three-step pro-
cess: (1) defining the search space of parallelization strate-
gies; (2) developing performance models to measure the
training efficiency of different strategies; (3) designing al-
gorithms to efficiently identify the optimal parallelization
strategy. Below we investigate different approaches accord-
ing to the search space they cover.

Some works have explored the search space of hybrid
data and pipeline parallelism strategies for DNN training
optimization. These approaches focus on partitioning DNNs
automatically and designing pipeline schedules to improve
the pipeline utilization. PipeDream [134] measures the effi-
ciency of pipeline partitions with the execution time of the
slowest stage and develops a dynamic programming algo-
rithm to partition the DNN evenly by minimizing the slow-
est stage. DAPPLE [152] builds an analytical model to esti-
mate the execution time of one partition strategy and uses
dynamic programming to determine the optimal pipeline
partition. AutoPipe [205] constructs a simulator to simulate
the pipeline execution and proposes a heuristic algorithm to
obtain the balanced partition. AutoPipe also automatically
splits the micro-batch to reduce the latency of the warm-
up stage. Some device placement approaches [206]–[208]
use reinforcement learning to predict the optimal operator
placement for pipeline parallelism.



16

Researchers also explore the automated data and model
parallelism by partitioning operators along different dimen-
sions. OptCNN [198] partitions operators along all divisible
dimensions in their output tensor and utilizes an analyti-
cal performance model to pick the optimal parallelization
strategy, including the parallelizable dimensions and de-
gree of parallelism, which defines how to parallelize an
individual layer across different devices. FlexFlow [199] fur-
ther extends the search space to Sample-Operator-Attribute-
Parameter (SOAP), which includes almost all the divisible
dimensions in input and output tensors, and introduces a
novel execution simulator for accurate performance mod-
eling. FlexFlow efficiently finds an optimal parallelization
strategy with MCMC sampling. Tofu [200] and HyPar [201]
develop dynamic programming algorithms that minimize
the total communication cost rather than the end-to-end
performance, to identify the optimal partition for each op-
erator in the hybrid data and model parallelism space. Ten-
sorOpt [204] optimizes the parallelization strategy under a
given memory budget with a frontier tracking algorithm.
AutoMap [202] employs Monte Carlo Tree Search (MCTS)
to select a sequence of partitioning rules defined by Par-
tIR [212] for a set of selected important operators via a
learned scorer. The whole parallelization strategy is prop-
agated from the strategy via the selected operators.

Recent works also design approaches for automated
data, model and pipeline parallelism. Piper [209] designs
a two-level dynamic programming approach to find the op-
timal hybrid data, tensor and pipeline parallelism combined
with activation recomputation. It first divides the model
into small partitions for the pipeline and then splits oper-
ators within each partition. Alpa [21] formulates a compre-
hensive space by viewing parallelisms as two hierarchical
levels: inter-operator and intra-operator parallelism. Then
it automatically derives an efficient parallel execution plan
at each parallelism level. Unity [210] jointly optimizes the
parallelization and algebraic transformations by represent-
ing them as substitutions on a unified parallel computation
graph. Aceso [211] proposes an iterative bottleneck allevi-
ation approach to significantly reduce the search time. It
identifies a performance bottleneck at every step and ad-
justs the strategy to mitigate the bottleneck until conver-
gence. nnScaler [213] introduces three primitives to enable
the composition of the search space with arbitrary parti-
tioning and spatial-temporal scheduling of the partitioned
model. Domain experts can apply constraints to the primi-
tives to build effective and small search spaces, which can be
automatically explored with low overheads. AutoDDL [215]
customizes a coordinate descent algorithm by iteratively up-
dating the SBP [214] distributions for each layer and quickly
discover an optimal strategy with near-optimal communica-
tion cost.

General auto parallelism frameworks demand efficient
system support for various parallelization strategies, in ad-
dition to fast optimization algorithms for optimal paral-
lelization strategy discovery. This is because parallelism
often involves complex computation and communication
operators, especially for model parallelism that partitions
operators. Prior works have developed efficient systems
that enable a wide range of parallelization strategies, either
by building upon modern DL frameworks [21], [213] or

implementation from scratch [199]. Mesh-TensorFlow [196]
observes the intrinsic complexity of implementing a paral-
lelization strategy, and first proposes to abstract the device
cluster into a multi-dimensional mesh, and abstract paral-
lelism into partitioning the iteration space (i.e. tensor di-
mensions). By mapping the tensor and mesh dimensions,
a hybrid data and model parallelism strategy can be easily
implemented with high performance. For example, data and
model parallelisms split the batch and hidden dimensions,
respectively. GSPMD [197] further provides a unified way
to achieve various general parallelism schemes with sim-
ple tensor sharding annotations based on JAX [250] and
XLA [251]. OneFlow [214] proposes SBP (Split, Broadcast,
Partial-value) abstraction for partition and allows users to
specify the placement and SBP signature for tensors to
implement different parallelization strategies. PartIR [212]
decouples the model from its partitioning and designs a
compiler stack for users to compose SPMD sharding strate-
gies incrementally via a schedule. Similar to TVM [252],
Slapo [203] defines a comprehensive set of schedule primi-
tives for parallelization and subgraph optimization like op-
erator fusion and activation checkpointing. These schedules
are decoupled from execution and preserves the original
model structure for progressive optimization.

4.2.2 Transformer-Specific Framework
As LLMs are based on the transformer architecture, re-
cent works tailor automated systems for transformers.
DeepSpeed-Autotuning [216] automatically tunes the sys-
tem knobs to figure out good performance-relevant config-
urations in the user-defined tuning space, including the de-
gree of parallelism. Galvatron [217] designs a dynamic pro-
gramming algorithm to generate the most efficient hybrid
data, tensor and pipeline parallelism strategy. Merak [218]
introduces an automatic model partitioner for non-intrusive
automatic parallelism and a high-performance 3D parallel
runtime engine to enhance the utilization of available re-
sources. Colossal-AI [219], [253] provides a unified inter-
face for modular usage of hybrid data, tensor, sequence
and pipeline parallelism. Galvatron-BMW [220] extends the
space of Galvatron to include sharded data parallelism and
activation recomputation, and searches for the optimal strat-
egy considering both the memory consumption and compu-
tation while maximizing the hardware utilization.

4.3 Heterogeneous Parallelism
The escalating computational demands of LLM training
have spurred advancements in heterogeneous hardware,
which harnesses diverse computing resources and globally
distributed devices. This heterogeneity is also reflected in
model architectures, particularly with Reinforcement Learn-
ing from Human Feedback (RLHF). Utilizing heterogeneous
hardware and diverse model architectures has become es-
sential for the efficient training of LLMs.

4.3.1 Heterogeneous Hardware
The massive computational requirements of LLM training
have driven the evolution of accelerators, leading to clusters
with mixed device types and uneven interconnect band-
widths. Additionally, modern data and computing clusters



17

are often distributed globally due to factors such as power
shortages. These phenomena have motivated the adoption
of heterogeneous parallelisms, which leverage diverse com-
puting resources and geographically distributed devices to
accelerate LLM training.

Some works leverage heterogeneous computing re-
sources, such as CPUs, GPUs, and specialized accelerators,
to enhance the performance of LLMs. The distinct com-
putation, memory capacity and interconnect bandwidth of
these devices introduce challenges for efficient LLM pre-
training. HetPipe [221] partitions the heterogeneous cluster
into multiple virtual works. Each virtual work processes
mini-batches with the pipeline parallelism, and different
virtual works employ asynchronous data parallelisms to im-
prove the throughput. AccPar [222] proposes flexible tensor
partitioning to balance the computation of different accel-
erators and uses dynamic programming to automatically
decide tensor partitioning among heterogeneous devices for
DNNs. Whale [223] proposes a unified abstraction to ease
the efforts for parallel training of giant models on heteroge-
neous clusters. It seamlessly adapts to heterogeneous GPUs
through automatic graph optimizations and balances the
workloads with hardware information. AMP [224] utilizes
a heterogeneous-aware performance model to find the op-
timal hybrid data, tensor and pipeline parallelism strategy.
HPH [226] arranges different GPUs into stages according
to the compute-communication ratio in descending order
and formulates the model partitioning as an integer pro-
gramming problem to minimize the iteration time. Path-
ways [225] employs a sharded dataflow model and asyn-
chronous gang-scheduling to efficiently execute ML models
on heterogeneous cluster. SDPIPE [227] introduces a semi-
decentralized scheme that decentralizes the communication
model synchronization and centralizes the process of group
scheduling for pipeline parallelism to utilize heterogeneous
devices. HAP [228] uses an A∗-based search algorithm to
generate the optimal tensor sharding strategy, sharding ra-
tio across heterogeneous devices and the communication
methods for distributed training. PipePar [229] proposes
a dynamic programming algorithm to partition the model
into stages for pipeline considering both the heterogeneity
of GPUs and network bandwidths.

Some other works explore geo-distributed devices, fea-
turing the low network bandwidth, to enhance the training
efficiency. Yuan et al. [230] partition the LLMs into compu-
tational tasklets and propose a novel scheduling algorithm
to efficiently utilize a group of heterogeneous devices con-
nected by a slow heterogeneous network for hybrid data
and pipeline parallelism. SWARM parallelism [231] parti-
tions the model into equal-sized stages and prioritizes rout-
ing inputs to stable peers with lower latency for workload
balance. It also adaptively moves devices across stages to
maximize the training throughput. FusionAI [232] splits the
training computation graph (DAG) into subgraphs (sub-
DAG) and generates a load balanced task schedule to utilize
heterogeneous consumer GPUs connected with low band-
width for pipeline training. Communication compression
approaches, like CocktailSGD [254], can also be leveraged
to train LLMs efficiently in low-bandwidth clusters.

Fig. 10: An example of RLHF. Inference process: 1 The
actor model generates a response from a given query. 2
The critic model, reward model, and reference model use
the query and response pairs to generate the value, score,
and KL divergence required for training through inference.
Training process: 3 The actor model and critic model use
the data collected in the inference process to update their
weights through gradient descent.

4.3.2 Heterogeneous Model
During the LLM training process, heterogeneity is not only
reflected in the hardware, but also in the model. Training
may involve the interaction of several different models. A
specific example is Reinforcement Learning from Human
Feedback (RLHF). RLHF is a training method that aims to
align AI systems more closely with human preferences [255],
leveraging human’s advantages in judging appropriate be-
havior rather than demonstrating. This method has received
widespread attention, especially for fine-tuning large lan-
guage models. However, due to the particularity of the
Proximal Policy Optimization (PPO) [256] algorithm, the
model heterogeneity is introduced into the RLHF training,
making the training process of RLHF very different from
pre-training and supervised fine-tuning.

In principle, RLHF consists of three different stages: the
stage 1 is supervised fine-tuning, the stage 2 is the train-
ing of the reward model, and the stage 3 is PPO training.
Model heterogeneity is presented in stage 3, as shown in
Fig. 10. The PPO training stage consists of two different
processes, namely the inference process that generates data,
and the training process that updates the weights of the
actor model and critic model. PPO training is performed
via the collaboration of these two processes. Moreover, the
training stage introduces higher memory cost, as we need
to serve several copies of auto-regressive generation models
and reward models at the same time, and more time costs,
because we must wait for the experience generation to be
completed before updating the weights.

Many frameworks have been proposed for RLHF train-
ing. For instance, DeepSpeed-Chat [233] uses Hybrid En-
gine to seamlessly switch model partitioning between train-
ing and inference, such as using tensor parallelism to im-
prove throughput during inference and using ZeRO [145] or
LoRA [257] to improve memory utilization during training,
providing outstanding system efficiency for RLHF train-
ing. HuggingFace TRL [234] can make full use of vari-
ous parameter-efficient fine-tuning (PEFT) methods, such
as LoRA or QLoRA [258], to save memory cost, and use
a dedicated kernel designed by unsloth [259] to increase the
training speed of RLHF. ColossalAI-Chat [253] is another



18

end-to-end RLHF training framework that also supports
LoRA and supports the use of ZeRO [145] to reduce memory
redundancy.

However, the above work adopts a flattening strategy for
model placement, that is, placing the four models in RLHF
on the same device, and then using methods such as ZeRO
or LoRA to minimize memory cost. But using only ZeRO
will lead to memory bottlenecks when training larger mod-
els, while using efficient parameter fine-tuning strategies
such as LoRA will damage model performance. To solve this
problem, OpenRLHF [235] uses Ray [260] and vLLM [261] to
distribute the reward models to different devices, avoiding
placing all four models in PPO on the same device. Similarly,
Adpative Placement and Parallelism (APP) framework [236]
proposed two other model placement strategies, namely In-
terleaving Strategy and Separation Strategy. It captures the
fact that the generation part and the training part can run
independently during PPO training, and some serialization
can be eliminated by placing them on different devices,
which introduces additional communication but can over-
lap well with computing.

Meanwhile, there are some works that apply the parallel
strategies in the first two stages to the stage 3 of RLHF in a
fine-grained scheduling manner. For example, ReaLHF [237]
switches the most suitable parallel mode for different sub-
stages in stage 3 by redistributing parameters, which greatly
increases the optimization space. PUZZLE [238] reschedules
the order of task execution according to the affinity of differ-
ent stages, so that stages with better affinity can effectively
cover execution and improve training efficiency.

5 COMPUTATION OPTIMIZATIONS

Today’s AI accelerators offer unprecedented computational
capabilities in terms of FLOPs. However, effectively utiliz-
ing these FLOPs to their full potential requires sophisti-
cated optimization techniques. This section introduces sys-
tems and techniques of computation optimizations to ef-
fectively utilize GPU FLOPs. We first elaborate operator
optimizations including the core attention operator opti-
mizations and automatic optimizations via compilers. Re-
markable performance for operator and computing graphs
is gained based on exploiting massive parallelism and effi-
cient multi-level memory access concerning the underlying
hardware features. Second, mixed-precision training is de-
tailed where computations are accelerated benefiting from
reduced precision. 16-Bit floating point mixed training has
been the de facto method in most training systems. Low-bit
fixed points as low as 1-bit have been studied and employed
for high training efficiency.

5.1 Operator Optimizations

Operator optimizations can be categorized into manual and
automatic optimizations. Manual optimizations mainly fo-
cus on the attention operator, while automatic optimizations
are applied more broadly.

5.1.1 Manually Optimized Attention Operator
Attention, as the core of transformer architectures, plays a
crucial role in the training efficiency of LLMs. Given a query

q, and lists of keys k1, k2, ..., kn and values v1, v2, ..., vn,
where q, ki, vi ∈ Rd, the attention is computed as follows,

si = dot(q, ki), s
′

i = softmax(si) =
esi∑
j e

sj
, oi =

∑
i

vis
′

i.

The self-attention exhibits quadratic time and memory com-
plexity relative to sequence length. The substantial mem-
ory consumption and frequent access to high-bandwidth
memory (HBM) imposed by self-attention constrain both the
performance and the context length of transformer models.
Extensive work is presented to optimize self-attention. We
focus on exact attention optimizations while lossy optimiza-
tions, like linear attention, are out of our scope.

Memory-efficient attention is primarily proposed to mit-
igate the large memory cost. Rabe et al. [287] prove that
self-attention needs O(logn) memory complexity instead of
O(n2). By employing lazy softmax, the division by

∑
j e

sj

in softmax can be delayed to the very end of the attention
operation. Thus the summation could be processed incre-
mentally which requires just a scalar (i.e. O(1)) to main-
tain the intermediate result but not change the output. The
self-attention requires extra O(logn) memory complexity to
keep the additional index into the list of queries to compute
the results to all queries sequentially.

The FlashAttention series further demonstrate fast and
memory-efficient exact attention with IO-awareness, high
parallelism, and balanced workloads on GPU. In FlashAt-
tention [115], an IO-aware tiling algorithm is proposed
to reduce the number of memory reads/writes between
slow HBM and fast on-chip SRAM based on the on-
line softmax. More specifically, the softmax could be cal-
culated one block at a time by tracking the normaliza-
tion statistics including the maximum score and the sums
of exponentiated scores. The tiling algorithm thus fuses
all the computation operation chain in self-attention in-
cluding matrix multiply, softmax, matrix multiply, etc, in
one cuda kernel for reduced HBM access. FlashAttention-
2 [116] further improves the low-occupancy and unneces-
sary shared memory reads/writes in FlashAttention with
additional parallelism in sequence length dimension and
improved warp-level scheduling for data sharing inside a
thread block. Besides, the popular training systems [174]
generally employ FlashAttention-2 for high performance.
FlashAttention-3 [262] speeds up attention on H100 GPU by
excavating the newly presented hardware capabilities as the
former FlashAttention implementations are based on A100
GPU. An interleaved block-wise GEMM and softmax algo-
rithm is redesigned based on FlashAttention-2 to hide the
non-GEMM operations in softmax with the asynchronous
WGMMA instructions for GEMM. Besides, by leveraging
the asynchrony of the Tensor Cores and Tensor Memory
Accelerator (TMA), overall computation is overlapped with
data movement via a warp-specialized software pipelining
scheme. Blockwise Parallel Transformer (BPT) [263] further
reduces the substantial memory requirements by extending
the tiling algorithm in FlashAttention to fuse the feedfor-
ward network.

The attention operation is also optimized on various
architectures by leveraging hardware-specific features. For
instance, SWattention [264] designs a two-level blocking at-
tention algorithm to exploit the underlying hardware of the



19

C
om

pu
ta

ti
on

O
pt

im
iz

at
io

ns
fo

r
LL

M
Tr

ai
ni

ng

Operator Optimizations

Manual Optimizations
FlashAttention [115], FlashAttention-2 [116],
FlashAttention-3 [262] , BPT [263], SWattention [264],
Bikshand et al. [265] , ByteTransformer [266]

Automatic Optimizations

Kernel-level: Halide [267], TVM [252], Roller [268],
Triton [269], ALCOP [270]
Graph-level: Chimera [271], Welder [272], Slapo [203],
TorchDynamo & TorchInductor [273], JIT-Q [274]

Mixed-precision Training

16-Bit Floating Point FP16 Mixed-Precision Training [275], Campo [276],
BF16 Mixed-Precision Training [277], THC [278]

Sub-8-Bit Floating Point Wang et al. [279], Sun et al. [280], FP8-LM [281] ,
Rouhani et al. [282]

Low-Bit Fixed Point
INT8: Jetfire [283]
INT4: Xi et al. [284]
1-Bit: BitNet [285], BitNet b1.58 [286]

Fig. 11: Studies on computation optimizations for distributed LLM training.

new Sunway architecture, building upon FlashAttention.
Similarly, Bikshand et al. [265] implement FlashAttention-2
on the H100 GPU using the Cutlass library. They utilize the
TMA and WarpGroup Matrix-Multiply-Accumulate (WG-
MMA) instructions to optimize data copying and GEMM
operations, respectively. Additionally, tensor layout trans-
formations and software pipelining of data copying and
computations between the two GEMMs are carefully de-
signed based on the Cutlass library.

Attention mechanisms are also optimized for variable-
length sequences, which are common in distributed LLM
training. These variable-length sequences can incur signifi-
cant memory and computation costs if padded to the max-
imum length. FlashAttention-2 efficiently handles variable-
length inputs by parallelizing the sequence length dimen-
sion inseparably. ByteTransformer [266] focuses on padding-
free transformers for variable-length inputs, maintaining a
position array during computation. This array records the
mapping relationship of valid tokens between the origi-
nal tensor and the intermediate packed tensor. The fused
Multihead Attention algorithm for long sequences employs
optimized grouped GEMM for unpadded tensors. This op-
timization reduces the memory and computation overhead
associated with padding, thereby enhancing performance.

5.1.2 Automatic Optimizations via Compilers

DNN compilers play an important role in optimizing key
computations in LLM training. Highly efficient kernels of
operators are generated automatically which mitigates the
burden of library-based kernel optimizations on diverse
hardware vendors to a great extent. Operator fusion is per-
formed by analyzing the computation graphs automatically
in the training process.

Efficient Operator Kernel Generation. Halide [267] and
TVM [252] generate high-performance operator implemen-
tations automatically, relying on multiple effective sched-
ule primitives that exploit parallelism and data locality on
various backends. Furthermore, Roller [268] optimizes the

cost of searching for optimal alternatives in the large search
space of kernel implementations. It primarily generates a tile
kernel consisting of Load, Store, and Compute interfaces,
following which the complete operator kernel is constructed
by a scale-up-then-scale-out approach. Triton [269] provides
a C-based language and compiler that facilitates expressing
and optimizing tile tensor programs for competitive perfor-
mance. In particular, effective optimizations such as hier-
archical tiling and shared memory allocation are supported
via machine-dependent compiling passes. ALCOP [270] per-
forms automatic load-compute pipelining to overlap the
high-latency memory access with computations for opera-
tors on GPUs. Multi-stage pipelining is utilized by pipeline
buffer detection as well as sophisticated index analysis and
substitution in complicated loop structures.

Graph-level Optimizations for Operator Fusion. With the
disparity of speed of computing cores and memory band-
width enlarging, modern DNNs are restricted by mem-
ory access. Data reuse among inter-operators is excavated
via operator fusion using compilers. Plenty of compiler
works [288]–[291] performs operator fusion by setting ex-
pert rules. Particularly, Chimera [271] works on optimiz-
ing compute-intensive operator chains. The operator chain
is firstly decomposed into a series of computation blocks
and the optimal block execution order is then selected to
maximize data reuse according to an analytical model. In
addition, replaceable microkernels are designed to leverage
hardware-specific intra-block optimizations. Welder [272]
lowers the computing graph into a tile-level data-flow graph
whose nodes are operator tiles and edges are marked with
the memory level of the tensor data reused by the con-
nected nodes. Operator fusion combinations that maximize
data reuse across different levels of memory hierarchies are
searched at the tile level.

Pytorch2 [273] presents two extensions, i.e. a Python-
level JIT compiler TorchDynamo and the corresponding
compiler backend TorchInductor, to enable more robust
graph compilation on various back-ends for remarkable



20

performance improvement without sacrificing the flexibil-
ity of Python. Slapo [203] proposes a schedule language to
decouple model execution from definition. Declaring a set
of schedule primitives, users could convert the model for
high-performance kernels. JIT-Q [274] proposes just-in-time
quantization for weights which enables storing only a high-
precision copy of weights during training and creates low-
precision weight copies based on the in-memory ALU aug-
mentations of the commercial PIM (processing-in-memory)
solutions.

5.2 Mixed-precision Training
Low-precision training is an effective methodology to re-
duce the computation, storage, and communication costs in
training large-scale models. Nowadays LLM training gen-
erally leverages FP16 and BF16 data types. In particular,
BF16 can represent the same range of values as that of FP32.
BF16 training is utilized in models such as BLOOM [292]
since the loss slowly diverges when the loss scalar becomes
too low in FP16 [293]. However, fast bfloat16 support is
only available on TPUs, or GPUs developed with or after
the NVIDIA Ampere series. Furthermore, mixed-precision
training and techniques such as loss scaling are exploited to
ensure numerical stability due to the limited dynamic range
represented by reduced precision. 8-Bit or even lower-bit
training is also becoming the focus of quantitative research.

5.2.1 16-Bit Floating Point
Popular training systems often employ FP16/BF16 mixed-
precision strategies to reduce precision during training, as
highlighted by works like Megatron-LM [20] and Colossal-
AI [253]. The FP16 mixed-precision training scheme [275]
utilizes the IEEE half-precision format to store weights, ac-
tivations, and gradients for forward and backward arith-
metic operations. To maintain model accuracy at reduced
precision, a single-precision copy of weights is kept for ac-
cumulation at each optimizer step. Loss scaling is also ap-
plied to preserve the values of small-magnitude gradients.
Campo [276] optimizes the casting cost incurred by con-
versions between FP32 and FP16 through automatic graph
rewriting. This is crucial since the casting cost can some-
times negate the performance benefits of low precision.
Campo also employs offline-trained linear regression mod-
els to predict casting costs and execution times for FP32 and
FP16 operations. BF16 [277] is also widely used in mixed-
precision training across various fields [294], [295]. It has
the same representational range as FP32 and does not re-
quire hyperparameter tuning for convergence. In addition,
THC [278] addresses computational overhead in parameter
server architectures by eliminating the need for decompres-
sion and compression. THC enables direct aggregation of
compressed gradient values through the Uniform Homo-
morphic Compression property, thus enhancing efficiency.

5.2.2 Sub-8-Bit Floating Point
With the newly released chips characterized by lower pre-
cision data types such as FP8, mixed-precision training is
designed to train with lower precision. Newly designed data
formats combined with the techniques to ensure numerical
stability are primarily leveraged to enable FP8 training for

deep learning neural networks. Wang et al. [279] use a new
FP8 floating point format for numerical representation of
data as well as computations. Chunk-based computations
and stochastic rounding are utilized in the floating point
accumulation and weight update process, respectively, to
preserve model accuracy. Sun et al. [280] propose hybrid
8-bit floating point training across the whole spectrum of
deep learning models without accuracy degradation. The
novel hybrid FP8 formats utilize different exponent bits and
mantissa bits for forward and backward propagation, re-
spectively, since forward and backward passes have differ-
ent optimal balances between range and precision. Besides,
the techniques such as loss scaling are used to avoid ac-
curacy degradation. With the maturation of more accelera-
tors with FP8 data types, an FP8 automatic mixed-precision
framework (FP8-LM) [281] for training LLMs based on
NVIDIA H100 GPU [296] is proposed, where 8-bit gradi-
ents, optimizer states, and distributed parallel training are
gradually incorporated and FP8 low-bit parallelism includ-
ing tensor, pipeline, and sequence parallelism is specified.
Besides, precision decoupling and automatic scaling are
designed to solve the data underflow or overflow issues
due to the narrower dynamic range and reduced precision.
FlashAttention-3 also employs block GEMM quantization
and incoherent processing that exploits hardware support
for FP8 low-precision on H100 GPU. Furthermore, Rouhani
et al. [282] train LLMs at sub-8-bit weights, activations, and
gradients with minimal accuracy loss by utilizing micro
scaled data formats that associate scaling factors with fine-
grained sub-blocks of a tensor.

5.2.3 Low-Bit Fixed Point
Low-bit fixed point training is also studied for LLM training.
Jetfire [283] maintains an INT8 data flow where inputs and
outputs are loaded and stored in INT8 data formats to ac-
celerate both compute-bound linear operators and memory-
bound non-linear operators. In addition, tiling algorithms
are utilized to excavate shared memory data access with
a per-block quantization method, where higher precision
computations are performed, i.e. INT32 for WMMA ten-
sor core operations for linear operators and FP32 for non-
linear operations, to maintain the accuracy of pretrained
transformers. Xi et al. [284] propose a novel INT4 training
algorithm for transformer models. In the forward propaga-
tion, the activation matrix is firstly transformed into a block
diagonal Hadamard matrix to alleviate the accuracy degra-
dation caused by outliers in the activation, and the trans-
formed matrix is then quantized. In the backward propaga-
tion, bit splitting and leverage score sampling are exploited
to choose informative gradients for quantization based on
the structural sparsity of activation gradients.

Recently, low-precision training for LLMs has advanced
to using 1-bit precision. BitNet [285] employs a novel low-bit
precision matrix multiplication within transformer blocks,
utilizing weights that are 1-bit and activations that are 8-bit.
The model weights are centralized around zero to maximize
capacity within the limited numerical range, then binarized
to +1 or -1 using the signnum function. To ensure training
stability and accuracy, the gradients, optimizer states, and a
high-precision latent weight copy are maintained for param-
eter updates. Building on BitNet, BitNet b1.58 [286] further



21

M
em

or
y

O
pt

im
iz

at
io

ns
fo

r
LL

M
Tr

ai
ni

ng
Activation Recomputation

Dynamic Evicting DTR [297], MegTaiChi [298], Coop [299]

Static Evicting Checkmate [300], LoongTrain [174], Yuan et al. [301],
Selective Checkpointing [170], DistFlashAttn [176]

Redundancy Reduction
Fully Sharding ZeRO [145], FSDP [146]

Partially Sharding ZeRO++ [302], MiCS [147], PaRO [303], RTP [304],
AMSP [305]

Defragmentation
Tensor-based Defragmentation ROAM [306], ZeRO-R [145], Imanishi et al. [307],

MegTaiChi [298], Coop [299]

VMM-based Defragmentation GMLake [308], Expandable Segments [309]

Offloading

CPU Offloading

Static Offloading: L2L [310], ZeRO-Offload [311],
Elixir [312], Yuan et al. [301]
Dynamic Offloading: TSPLIT [313], PatrickStar [314],
Mobius [315], Harmony [316], TMOF [317],
STRONGHOLD [318]

SSD Offloading ZeRO-Infinity [319], Angel-PTM [320],
Smart-Infinity [321], Fuyou [322], MoESys [323], [324]

Fig. 12: Studies on memory optimizations for distributed LLM training.

enhances modeling capability by lowering model weights
to ternary values {-1, 0, 1}. The weight matrix is scaled by
its average absolute value, and each value is rounded to the
nearest integer among -1, 0, and +1.

6 MEMORY OPTIMIZATIONS

Memory consumption during the training of LLMs can be
categorized into four key components: model states, activa-
tions, temporary buffers, and memory fragmentation.

• Model States: Model states encompass the memory
consumed by the optimizer states, gradients, and
model parameters. In mixed-precision training [275],
model parameters and activations are stored in 16-bit
precision. When training a model with Φ parameters,
4Φ bytes are needed to store parameters and gradi-
ents. The 32-bit copies of the parameters, momen-
tum, and variance each require 4Φ bytes, totaling
12Φ bytes. Therefore, the overall memory require-
ment for storing model states is 16Φ bytes.

• Activations: Activations refer to the tensors gener-
ated during the forward pass. These tensors are es-
sential for gradient computation during the back-
ward phase.

• Temporary Buffers: Temporary buffers are used to
store intermediate results. For example, operations
such as gradient AllReduce often fuse gradients in a
bucket into a single flattened buffer before applying
the operation to enhance throughput.

• Memory Fragmentation: Memory fragmentation can
lead to scenarios where memory requests fail de-
spite having a large amount of available memory.
This occurs because usable memory can become frag-
mented, and there is insufficient contiguous memory
to satisfy the memory request [145].

To address memory constraints of LLM training, various
memory-efficient techniques have been proposed. These in-

clude activation recomputation strategies, which trade in-
creased computation for reduced memory usage; redun-
dancy reduction methods that minimize data duplication
across training processes; defragmentation techniques that
optimize memory allocation and deallocation to reduce
fragmentation and improve memory utilization; and swap
and offload approaches that leverage CPU memory and
NVMe SSDs to supplement GPU memory. Figure 12 outlines
the taxonomy of these optimizations for memory-efficient
LLM training.

6.1 Activation Recomputation

During the backward phase of model training, activations
are essential for computing gradients. As model sizes in-
crease, the memory required to store these activations dur-
ing training can exceed GPU memory capacity, thereby lim-
iting the scale of the models that can be trained. Activa-
tion recomputation [325] provides a solution by strategically
discarding certain activations during the forward pass and
recomputing them as needed during the backward pass.
This approach has become a de facto method for reducing
memory consumption in LLM training. The key to effective
activation recomputation is balancing the memory savings
against the additional computational overhead.

We categorize these methods into two primary ap-
proaches: static evicting and dynamic evicting. Static evict-
ing methods typically involve the formulation of evicting
strategies tailored to specific model architectures or mod-
ules. In contrast, dynamic evicting methods make decisions
in real-time without prior knowledge of the model. Al-
though static approaches necessitate modifications for new
models, the structure of the majority of LLMs share simi-
lar architectures, enabling the general application of these
strategies during LLM training. Despite their inherent flex-
ibility, dynamic evicting methods have not been widely
adopted in the training of LLMs. Nevertheless, we still ex-



22

plore some related works in this section for further refer-
ence.

6.1.1 Static Evicting

Static evicting involves establishing a fixed plan for discard-
ing activations during the forward pass and later recomput-
ing them during the backward pass. Checkmate [300] for-
mulates this activation recomputation problem as a mixed
integer linear program to determine the optimal remate-
rialization plan for static deep learning models. However,
Checkmate struggles to scale to large models like LLMs due
to the vast search space.

Recently, several works have proposed customized ac-
tivation recomputation policies tailored for LLM training.
Selective-checkpointing [170] selectively discards the acti-
vations of memory-intensive attention modules. FlashAt-
tention [115] fuses the attention module into a single
kernel, and also employs selective-checkpointing to re-
duce memory consumption. DistFlashAttn [176] addresses
the high computation overhead in long sequences caused
by the recomputation of attention modules, employing
a rematerialization-aware gradient checkpointing strategy.
Specifically, DistFlashAttn places checkpoints at the out-
put of the FlashAttention kernel instead of at the Trans-
former layer boundary, thereby removing recomputation
in the attention module during the backward pass and
only requiring storage of its output. LoongTrain [174] intro-
duces selective-checkpoint++, which further optimizes the
checkpointing process, particularly for training with long
sequences, by adding attention modules to a whitelist. This
method saves the attention output and softmax statistics
(softmax_lse). During the forward pass, it saves the out-
puts of the modules in the whitelist, and during the back-
ward pass, it retrieves these stored outputs instead of recom-
puting them, continuing the computation graph and thus
reducing the need for recomputing attention.

Unlike recent works that predominantly focus on hand-
crafted checkpointing policies on attention modules for
LLM training, Yuan et al. [301] carefully measure the min-
imum computation cost required to reconstruct each acti-
vation tensor during model training. They derive a Pareto
frontier of memory and computation costs by enumerating
all possible checkpointing methods. From this Pareto fron-
tier, they select a solution that optimally balances computa-
tion and memory costs.

6.1.2 Dynamic Evicting

Dynamic evicting makes real-time decisions on which ac-
tivations to discard and recompute based on the current
state of the training process. DTR [297] proposes a greedy
online algorithm to heuristically evict and rematerialize
tensors at runtime for both static and dynamic models.
MegTaiChi [298] introduces a dynamic tensor evicting that
leverages the access patterns of tensors tracked at runtime.
Coop [299] proposes to mitigate the memory fragmentation
issue caused by activation recomputing methods due to
evicting tensors without considering their contiguity. Coop
employs an efficient sliding window algorithm to ensure
that only contiguous memory blocks are evicted, thereby
minimizing memory fragmentations.

6.2 Redundancy Reduction

Traditional data parallel approaches replicate the entire
model state across all GPUs, which leads to substantial re-
dundant memory usage. Redundancy reduction techniques
are proposed to optimize memory usage by eliminating
or reducing memory redundancies on each device. These
techniques often seek to balance memory efficiency with
the induced communication overhead, thereby facilitating
training of larger scale or batch size with acceptable costs.

6.2.1 Fully Sharding
The Zero Redundancy Optimizer (ZeRO) [145] optimizes
memory redundancies by fully sharding model states across
all GPUs through three stages: ZeRO-1, ZeRO-2, and ZeRO-
3. ZeRO-1 globally distributes optimizer states across all
GPUs. During the training, each GPU conducts indepen-
dent forward and backward propagation to compute gradi-
ents, which are subsequently synchronized across all GPUs
within the data parallel group using an ReduceScatter oper-
ation. Each GPU is responsible for updating specific shard
of the model parameters. Following this, the updated model
parameter shards are collected from other GPUs using an
AllGather operation, ensuring that all GPUs have the latest
model parameters. ZeRO-1 reduces the memory consump-
tion of optimizer states from 12Φ to 12Φ/N , where N is
the size of data parallelism. Building upon ZeRO-1, ZeRO-2
further shards the gradients across all GPUs and each GPU
only updates its parameter shard, reducing the memory
required for holding gradients from 2Φ to 2Φ/N . ZeRO-
3 partitions parameters in addition to optimizer states and
gradients. Each GPU only holds a part of the parameters.
When the parameters from remote GPUs are needed for the
upcoming computation, they are collected by an AllGather
operation and discarded afterward. In ZeRO-3, each GPU
holds only the weights, gradients, and optimizer states cor-
responding to its specific parameter partition, reducing the
overall memory consumption from 16Φ to 16Φ/N . ZeRO is
widely adopted by numerous frameworks, such as Deep-
Speed [183], PyTorch-FSDP [146], and ColossalAI [253].

6.2.2 Partially Sharding
ZeRO faces communication challenges since the latency
of collective communication operations increases with the
communication scale. There exists a trade-off between
memory utilization and communication cost in distributed
LLM training. Optimizing communication overhead can be
achieved by sharding the model states across smaller groups
of GPUs, which are smaller sets of GPUs within a large GPU
cluster. This approach reduces inter-node communications
and communication scales, though it may lead to higher
memory usage due to increased redundancy of model states.
The key is to balance the communication scale with memory
utilization [305].

Several approaches building upon the ZeRO framework
have been proposed to address the communication ineffi-
ciencies while improving memory utilization. ZeRO++ [302]
partitions all model states globally across all devices follow-
ing ZeRO-3 and further introduces a secondary shard of pa-
rameters within subgroups of GPUs. In the forward phase,
it collects parameters leveraging the primary shard across



23

all GPUs and maintains a secondary shard of parameters
within subgroups, typically within the same node. During
the backward phase, it collects parameters from this sec-
ondary shard, reducing communication scale and inter-node
communications. Additionally, ZeRO++ uses quantization
to compress parameters and gradients, effectively dimin-
ishing communication volume with a trade-off in accuracy.
MiCS [147] and FSDP [146] shards all model state com-
ponents within subgroups and replicates them across sub-
groups, thereby reducing communication scale and conse-
quently communication latency, leading to enhanced train-
ing performance. AMSP [305] and PaRO [303] incorporate
three flexible sharding strategies, including Full-Replica,
Full-Sharding, and Partial-Sharding, allowing each compo-
nent within the model states to independently choose a
sharding strategy. AMSP formulates an optimization prob-
lem to find the optimal sharding strategy that minimizes
communication costs under memory constraints. In addi-
tion, AMSP proposes a customized communication and
computation overlap strategy, incorporating these flexible
sharding strategies to achieve optimized training efficiency.
RTP (Rotated Tensor Parallelism) [304] seeks to minimize
memory duplication by strategically sharding activations
and rotating weights/gradients.

6.3 Defragmentation

GPU memory fragmentation refers to the scattered, unus-
able chunks of GPU memory that arise between adjacent
tensors. This problem is particularly pronounced during the
training of LLMs due to the varying lifetimes of different
tensors and the inefficient memory allocation and dealloca-
tion schemes of general deep learning frameworks, such as
PyTorch [240] and TensorFlow [326]. Furthermore, memory
optimization techniques like recomputation and offloading
exacerbate the issue by introducing more frequent and ir-
regular memory allocation and deallocation requests [299],
[306], [308]. The fragmentation problem could cause high
peak memory and out-of-memory (OOM) errors limiting
the batch size and overall training efficiency. Defragmen-
tation efforts are proposed to mitigate these issues through
memory management techniques.

6.3.1 Tensor-based Defragmentation
Deep learning frameworks typically use a caching alloca-
tor with a memory pool to enable fast memory allocation
and deallocation without requiring device synchronization.
Several approaches have been proposed to reduce memory
fragmentation based on the tensor allocation and deallo-
cation scheme in the caching allocator. ROAM [306] co-
optimizes the execution order of operators and tensor al-
location by considering tensors’ lifetimes and sizes. It intro-
duces an efficient tree-based algorithm to search for an exe-
cution plan that maximizes tensor reuse and reduces data
fragmentation. ROAM has been evaluated in single-GPU
scenarios, specifically with the largest model being the 1.5B
GPT-2 XL [5], but it has not yet been tested in distributed
training scenarios with larger models, where computation
graphs can become significantly larger. Imanishi et al. [307]
present an offline optimization approach by modeling ten-
sor allocation as a 2D bin-packing problem. In this model,

each tensor allocation is represented as a vertically mov-
able rectangle, reflecting periodic allocation patterns during
model training. They propose a heuristic algorithm using
simulated annealing to optimize the topological ordering of
allocations, aiming to minimize fragmentation. While effec-
tive, this method may struggle with scalability issues when
applied to LLMs due to the high number of allocations and
complex patterns involved. MegTaiChi [298] and Coop [299]
consider memory fragmentation issues when evicting acti-
vation tensors for reducing memory consumption.

6.3.2 VMM-based Defragmentation
GMLake [308] and PyTorch expandable segments [309] pro-
pose to mitigate fragmentation by utilizing the virtual mem-
ory management (VMM) functions of the low-level CUDA
driver application programming interface. This low-level
API provides developers with direct control over the GPU’s
virtual memory operations, such as reserving, mapping, and
managing virtual memory addresses. Building on this, GM-
Lake [308] introduces a virtual memory stitching mecha-
nism that consolidates non-contiguous memory blocks into
larger ones through virtual memory address mapping, min-
imizing data movement and copying. Similarly, PyTorch’s
expandable segments [309] enable allocated memory seg-
ments to be expanded to larger sizes for reuse. Both ap-
proaches are transparent to different models and memory-
efficient training techniques and can be seamlessly inte-
grated into existing deep learning frameworks. Further-
more, GMLake demonstrates excellent scalability on multi-
GPUs with minimal overhead and does not require modi-
fication to user code. PyTorch-v2.1 has also integrated ex-
pandable segments.

6.4 Offloading
To enable efficient training of LLMs on fewer GPUs, various
works leveraging swap and offload methods have been pro-
posed. These techniques transfer parts of the computation
and data from GPU memory to external resources, which
are inexpensive and slower but enjoy vast capacity.

6.4.1 CPU Offloading
Numerous studies have proposed methods to efficiently
utilize CPU memory to enhance distributed LLM training.
These techniques can be broadly categorized into two main
approaches: Static Offloading and Dynamic Offloading.

Static Offloading. Static offloading methods involve a pre-
determined allocation of model components between GPU
and CPU memory. L2L [310] manages and moves tensors
layer by layer. L2L synchronously fetches tensors required
for the upcoming computational layers into GPU memory
while keeping the tensors for the remaining layers stored
in CPU memory. L2L allows scaling the models to arbi-
trary depth but fails to scale across multi-GPUs. In contrast,
ZeRO-Offload [311] concentrates on multi-GPU training. It
holds model parameters on GPU, and stores optimizer states
and gradients on CPU memory. In addition, it offloads
optimizer update computation to the CPU. This method
enables the training of up to 70B models with 16 V100s.
However, ZeRO-Offload can leave some GPU memory un-
used and suffers from slow CPU optimizer updates [312].



24

To address this issue, Elixir [312] employs a search engine
to find the optimal combination of memory partitioning
and offloading by leveraging pre-runtime model profiling.
Unlike ZeRO-Offload, Elixir effectively utilizes all available
GPU memory by partitioning both the model states and
optimizer chunks between GPU and CPU. Mobius [315]
tackles multi-GPU training on commodity servers with lim-
ited inter-GPU bandwidth and high communication con-
tention by introducing a pipeline parallelism scheme. This
scheme assigns each GPU multiple stages and dynamically
swaps them between GPU and CPU memory. Additionally,
Mobius optimizes communication through prefetching and
cross-mapping to reduce overhead and contention. Yuan et
al. [301] propose to mitigate the activation bottleneck by
offloading and reloading activations at the granularity of
pipeline stages while maximizing the overlap between ac-
tivation transmission with computation, thereby avoiding
slowing the training process. Compared to other offloading
efforts, this work focuses more on improving the balance
between computation and memory utilization rather than
training with extremely tight memory budgets.

6.4.2 Dynamic Offloading

Dynamic offloading methods adaptively allocate partitions
of model or tensors between GPU and CPU memory based
on real-time optimization of memory utilization and data
transmission. STRONGHOLD [318] proposes to dynami-
cally offload model states between GPU and CPU mem-
ory and maintain a suitable working window size to min-
imize GPU stalls during offloading. Harmony [316] em-
ploys a heuristic-based scheduler to map computation and
model states to physical devices. Harmony reduces the over-
head for offloading with reduced swaps and fast peer-to-
peer swaps. TMOF [317] introduces disjoint swapping and
bidirectional overlapping coordination mechanisms to pre-
vent PCIe channel contention in swapping and offloading.
For MoE models, MPipeMoE [327] designs an adaptive
and memory-efficient pipeline parallelism algorithm. Specif-
ically, MPipeMoE employs efficient memory reusing strate-
gies by eliminating memory redundancies and an adaptive
selection component to decide whether to offload or recom-
pute the required tensors to reduce memory requirements.

To facilitate better memory management, some studies
have proposed systems that break tensors into finer-grained
units. TSPLIT [313] and PatrickStar [314] are two dynamic
memory management systems that optimize peak GPU
memory usage. TSPLIT splits tensors into micro-tensors and
performs operations at the micro-tensor level, enabling pre-
cise and dynamic memory operations. PatrickStar organizes
model data into memory chunks that are dynamically dis-
tributed between CPU and GPU memory and optimizes
CPU-GPU data transmission as well as bandwidth utiliza-
tion. Additionally, TSPLIT uses a model-guided planning
algorithm to find optimal memory configurations for each
tensor, while PatrickStar employs runtime memory tracing,
chunk eviction strategies, and device-aware operator place-
ment to further minimize data movement between CPU and
GPU.

6.4.3 SSD Offloading
To facilitate the training of trillion-scale LLMs, where meth-
ods solely relying on CPU offloading are insufficient, sev-
eral works have been proposed for offloading data to both
CPU memory and NVMe SSDs during training. ZeRO-
Infinity [319] offloads all the partitioned model states to
CPU or NVMe memory and offloads activation only to
CPU memory. This method supports training models with
up to 32T parameters on 32 nodes (a total of 512 V100s).
However, the CPU offloading for activations still requires
extensive CPU memory. For instance, approximately 0.76
TB of CPU memory is needed to store activation check-
points for training a 10T model, and around 4 TB for 100T
models. Fuyou [322] focuses on training LLMs on com-
modity servers with limited CPU memory capacity and a
single GPU. Compared to ZeRO-Infinity, Fuyou further of-
floads the activations to SSDs and incorporates SSD-CPU
communication as an additional optimization dimension.
It also proposes a synchronous out-of-core CPU optimizer
that overlaps with the backward propagation stage and
introduces an automatic activation swapping mechanism,
thereby maximizing GPU utilization. Smart-Infinity [321]
proposes to reduce the secondary storage bandwidth re-
quirements by using near-storage processing devices for
parameter update. MoESys [323], [324] combines various
storage devices (GPU, CPU memory, and SSDs) to save the
sparse parameter states and dense parameter states and pro-
pose a 2D prefetch scheduling strategy to MoE training so
that the computation of parameters can be overlapped with
the scheduling.

7 COMMUNICATION OPTIMIZATIONS

Different parallelism mechanisms introduce varying pat-
terns of network communication traffic. For instance, tensor
parallelism requires AllReduce operations across the tensor
parallelism ranks. Data parallelism, on the other hand, ne-
cessitates AllReduce operations for gradient synchroniza-
tion across data parallelism ranks at the end of each itera-
tion. Pipeline parallelism involves passing activation values
to the next stage at the end of each stage. Typically, training
frameworks place tensor or sequence parallel communica-
tion groups, which demand high bandwidth, within high-
bandwidth domains (e.g., the same node), while placing
data parallel or pipeline parallel communication groups,
which have lower bandwidth requirements, between high-
bandwidth domains. Fig. 13 shows the communication
heatmap of LLM training in practice and well reflects the
data traffic brought by different parallel strategies. From this
heatmap, it can be observed that the LLM training commu-
nication traffic exhibits a clear pattern and hierarchy, with
most communication occurring within smaller scopes, and
only a little fraction of the traffic crossing the entire clus-
ter. This insight has inspired approaches like rail-optimized
topology [62], which reduces unnecessary core switches to
cut costs.

This section introduces systems and techniques for op-
timizing the collective communication performance of dis-
tributed LLM training. As shown in Fig. 14, we first discuss
collective communication libraries, which utilize both pre-
defined and synthesized algorithms. Next, we explore com-



25

Fig. 13: Communication traffic heatmap for InternLM-2
102B pre-training using 128 GPUs during a single itera-
tion, with tensor parallelism (TP) size 8, pipeline parallelism
(PP) size 4, data parallelism (DP) size 4 and ZeRO stage
1 (ZeRO-1) size 4. The prioritization of topology arrange-
ment is TP >DP/ZeRO-1 >PP. There are four different data
traffic loads: 1 the AllReduce of TP; 2 3 ReduceScat-
ter/AllGather of DP/ZeRO-1; 4 Send/Recv of PP. The
communication for TP utilizes the fully-connected topology
of NVSwitch, resulting in sixteen dense square traffic pat-
terns along the diagonals in the diagram, with each pattern
representing a node. The cross-node communication traffic
for DP and ZeRO-1 are shown in the diagram as six symmet-
ric diagonal lines within the four 32x32 rectangular topolo-
gies. It is important to note that DP/ZeRO-1 also involves
intra-node communication traffic, which accumulates into
the same heatmap grid as TP. Due to its relatively small
communication volume, PP forms two yellow lines on the
heatmap at coordinates ((32, 0), (128, 96)) and ((0, 32), (96,
128)). (In this diagram, all communications use the ring-
based collective algorithm)

munication scheduling techniques designed to reorganize
communication operations to overlap with computation,
thereby reducing delays and accelerating the training pro-
cess. Finally, we delve into in-network aggregation (INA),
which leverages the computational capabilities of network
devices to perform aggregation operations, such as sum-
ming gradients of deep learning models.

Compressing model parameters and gradients effec-
tively reduces communication overhead during distributed
LLM training. Various studies explore sparse communica-
tion and quantization approaches. For example, ZeRO++
[302] adopt quantization on weights to shrink down each
model parameter from FP16 to INT8 data type before com-
municating. However, these works typically involve lossy
sparsification or quantization techniques. We do not survey
lossy data compression techniques in this section, as they
are beyond the scope of this work.

7.1 Collective Communication

The Message Passing Interface (MPI) is a widely adopted
programming model for large-scale scientific applications
on parallel computing architectures. MPI has several imple-
mentations, including OpenMPI [328], MPICH2 [329], and
MVAPICH [330]. These libraries provide a variety of CUDA-
aware primitives such as AllReduce, AllGather, and Re-
duceScatter, which are essential for distributed LLM train-
ing. In practice, current training frameworks prefer collec-
tive communications tailored to specific AI accelerators with
pre-defined or synthesized algorithms.

7.1.1 Pre-Defined Collective Communication Algorithm
NVIDIA’s NCCL [331] and AMD’s RCCL [332] are highly
optimized libraries that typically outperform MPI-based col-
lective communication libraries on their respective AI accel-
erators. These libraries usually select pre-defined algorithms
to perform collectives based on conditions such as network
topology and input tensor size.

Ring Algorithm. The Ring algorithm is used for collec-
tive communications like AllReduce to move data across
all GPUs. With this algorithm, the input tensor is split into
multiple chunks and transferred one by one during the op-
eration. This pipeline reduces the idle time that each de-
vice spends waiting for data. Baidu used the bandwidth-
optimal ring AllReduce algorithm [333] for distributed deep
learning model training. Horovod [143] replaced the Baidu
ring-AllReduce implementation with NCCL and designed a
user-friendly interface for distributed training.

Tree Algorithm. The latency of the Ring algorithm in-
creases with the number of GPU devices [346]. The Double
Binary Tree algorithm [334] was proposed to solve this prob-
lem. Double binary trees rely on the fact that half or fewer
ranks in a binary tree are nodes and half or more ranks are
leaves. Therefore, a second tree can be built using leaves as
nodes and vice-versa for each binary tree. This algorithm is
implemented in MPI-based libraies, NCCL and RCCL.

Hybrid Algorithm. Several approaches propose using hy-
brid algorithms to handle collective communication tasks on
training clusters with heterogeneous intra-node and inter-
node communication bandwidth. Two-level AllReduce [335]
divides a single AllReduce operation into three steps: intra-
node Reduce utilizing PCIe/NVLINK, inter-node AllRe-
duce utilizing network, and intra-node Broadcast. 2D-Torus
AllReduce [336] and ACCL [337] decompose a single AllRe-
duce operation into three phases: intra-node ring-based
ReduceScatter, inter-node tree-based AllReduce, and intra-
node ring-based AllGather. BlueConnect [338] breaks down
a single AllReduce operation into numerous parallelizable
ReduceScatter and AllGather operations. Each operation can
be mapped to different network fabrics, leveraging the best-
performing pre-defined implementation for each specific
fabric. Plink [339] could probes network topology and ef-
ficiently generates two-level hybrid communication plans,
exploiting locality in datacenter networks.

7.1.2 Synthesized Collective Communication Algorithm
Several approaches have emerged that synthesize collective
communication algorithms and kernels specifically tailored



26

C
om

m
un

ic
at

io
n

O
pt

im
iz

at
io

ns
fo

r
LL

M
Tr

ai
ni

ng Collective Communication

Pre-Defined Algorithm Library: MPI [328]–[330], NCCL [331], RCCL [332]
Algorithm: Ring [333], Tree [334], Hybrid [335]–[339]

Synthesized Algorithm GC3 [340], SCCL [341], TACCL [342], Blink [343],
P 2 [344]

Communication Scheduling

FIFO-based Scheduling Poseidon [345], GradientFlow [346],
Pytorch DDP [142]

Priority-based Scheduling P3 [347], TicTac [348], ByteScheduler [349],
PACE [350], Lina [188]

Decomposition-based Scheduling

Pipeline Stage Decomp.: Breadth-First [159],
Fold3D [351], TriRace [352]
Communication Decomp.: Wang et al. [353],
SYNDICATE [354], Centauri [355], DeAR [356]
Computation Decomp.: CoCoNet [357], T3 [358],
Oases [359], Lynx [360]
Out-of-order backpropagation (ooo) [361]

In-Network Aggregation
Ethernet-based Aggregation SwitchML [362], FPISA [363], NetReduce [364],

AllReduce-Switch [365], PANAMA [366], ATP [367]

Infiniband-based Aggregation NVIDIA Mellanox’s SHARP v1/v2/v3 [368]

Fig. 14: Studies on communication optimizations for distributed LLM training.

to the hardware topology, aiming to outperform generic pre-
defined algorithms in many cases. GC3 [340] introduces a
data-oriented domain-specific language (DSL) for designing
custom collective communication algorithms. It includes an
optimizing compiler that translates these algorithms into
executable forms optimized for specific hardware configu-
rations. SCCL [341] encodes the collective communication
synthesis problem as an SMT (Satisfiability Modulo Theo-
ries) formula. This approach aims to derive exact schedules
for Pareto-optimal algorithms, optimizing both latency and
bandwidth utilization. TACCL [342] formulates the problem
of finding optimal communication algorithms as a mixed in-
teger linear program (MILP). It leverages a communication
sketch abstraction to efficiently gather essential information
and reduce the search space, with the goal of minimizing
overall execution time. Blink [343] dynamically constructs a
topology with suitable link capacities by probing available
link sets for each job at runtime. Using this topology, it op-
timizes communication rates through the creation of packet
generation trees, and generating CUDA code. P 2 [344] utl-
izes parallel matrices to partition the parallel axis at the sys-
tem level, thereby generating topology-aware parallel place-
ment and reduction strategies. By simulating and predicting
communication costs, this method reduces the number of
actual evaluations required.

7.2 Communication Scheduling

Communication scheduling in distributed training reorga-
nizes communication operations to overlap with compu-
tation, thereby reducing delays and accelerating the train-
ing process. The key concept of communication schedul-
ing involves reordering communication operations based on
the data dependencies of parallel training. Hybrid parallel
LLM training necessitates multidimensional communication
scheduling schemes to manage communications generated

by data, pipeline, tensor, and sequence parallelism, as well
as their combinations.

7.2.1 FIFO-based Scheduling

During the backward phase, rather than waiting for all gra-
dient calculations to complete before initiating communica-
tion, communication can begin as soon as each gradient is
ready. This wait-free backpropagation approach leverages
a dependency-directed acyclic graph to manage tasks effi-
ciently. Poseidon [345] employs a First-In-First-Out (FIFO)
queue to schedule AllReduce operators, ensuring that each
layer starts its communication once its gradients are gen-
erated. Motivated by the efficiency of collective communi-
cations on large tensors, GradientFlow [346] and Pytorch
DDP [142] fuse multiple sequential AllReduce communica-
tion operations into a single operation. This method avoids
transmitting a large number of small tensors over the net-
work by waiting for a short period of time and then combin-
ing multiple gradients into one AllReduce operation during
the backward phase.

7.2.2 Priority-based Scheduling

The FIFO scheme is often sub-optimal because the generated
communication sequence of in the backward phase differs
from the computation sequence in the forward phase. This
mismatch can lead to communication blocking computa-
tion, even when overlap is enabled. Consequently, many
approaches employ priority queues to schedule communi-
cation operators efficiently. P3 [347] schedules AllReduce
operations at a finer granularity, overlapping gradient com-
munication of the current layer with the forward computa-
tion of the next layer. Unlike FIFO queue-based scheduling,
this method divides layers into fixed-sized slices and pri-
oritizes synchronizing slices based on the order in which
they are processed in forward propagation. Therefore, the



27

first layer gets the highest priority, with priority decrement-
ing towards the end. When utilizing the parameter-server
architecture for distributed model training, TicTac [348] pri-
oritizes transfers that accelerate the critical path within the
underlying computational graph.

ByteScheduler [349] and PACE [350] are proposed to
generalize priority-based communication scheduling across
training frameworks. Specifically, ByteScheduler [349] in-
troduces a unified abstraction to facilitate communication
scheduling without disrupting the original dependencies
within framework engines. ByteScheduler achieves good
performance by using Bayesian optimization to automati-
cally tunes two critical parameters: partition size and credit
size. PACE [350] implements preemptive communications
by segmenting primitive AllReduce operations into smaller
pieces. The preempted AllReduce operators can be resumed
at a later time. This preemption strategy prevents head-of-
line blocking of large communication tensors. Additionally,
PACE uses a dynamic programming approach to fuse small
communication tensors to reduce the overhead caused by
handling a large number of small tensors, thereby achieving
more efficient bandwidth utilization.

To improve bandwidth efficiency in MoE systems,
Lina [188] prioritizes All-to-All operations over AllRe-
duce. Typically, expert-parallel (All-to-All) and data-parallel
(AllReduce) processes use separate CUDA streams, causing
potential overlap and bandwidth sharing without coordina-
tion. Lina breaks tensors into smaller chunks, ensures All-to-
All operations get full bandwidth while allowing AllReduce
micro-ops to run during idle time. In addition, micro-ops
enable overlap All-to-All operations with expert computa-
tions.

7.2.3 Decomposition-based Scheduling

Several advancements have focused on decomposing com-
munication and computation operations into fine-grained
tasks, reordering these operations with greater flexibility to
maximize overlap and optimize execution efficiency.

Pipeline Stage Decomposition. When using conventional
pipeline parallelism, each GPU stores a contiguous segment
of layers. Breadth-First [159] further splits these contiguous
stages into finer-grained stages distributed across different
GPUs, forming a loop by connecting the first and last GPUs,
so each GPU is assigned multiple stages. This allows the
given micro-batch to reach the end of the pipeline earlier,
reducing pipeline bubbles. Breadth-First uses a breadth-
first scheduling strategy to achieve greater computation-
communication overlap. Fold3D [351] employs an all-in-all-
out scheduling strategy to overlap the pipeline’s gradient
synchronization process with computation. This involves
further folding model fragments within the pipeline, where
each device contains two model fragments, allowing one
fragment’s gradient synchronization to overlap with an-
other fragment’s forward or backward computation.

Asynchronous pipeline parallelism relaxes data depen-
dencies between gradients and parameter updates. Lever-
aging this characteristic, TriRace [352] postpones parame-
ter updates to maximize computation overlap with gradi-
ent communication. Additionally, TriRace decomposes bidi-
rectional P2P communication between pipeline stages into

two separate unidirectional operations and prioritizes them
based on critical path analysis.

Communication Decomposition. Communication prim-
itives could be decomposed into fine-grained operations
with high scheduling flexibility. Wang et al. [353] decom-
posed communication operations (e.g., AllGather and Re-
duceScatter), into a series of fine-grained peer-to-peer col-
lections. In addition, computational operations (e.g., Ein-
stein Summation) were divided into fine-grained tasks, each
performing a part of the computation. This decomposition
creates more opportunities for overlapping communication
with computation. SYNDICATE [354] segments communi-
cation operations into smaller sub-operations, termed Mo-
tifs, and employs a Central Optimizer using Markov Chain
Monte Carlo search to achieve optimal overlap execution
plans. Centauri [355] adopts a different approach by us-
ing Primitive Partition, Group Partition, and Workload Par-
tition to decompose communication operations into fine-
grained atomic operations. These operations are then sched-
uled using Workload-aware Scheduling, Backward Schedul-
ing, and Elastic Scheduling to maximize overlap efficiency.
DeAR [356] also decomposes communication primitives,
specifically breaking down AllReduce into AllGather and
ReduceScatter. This decomposition allows subsequent oper-
ations to overlap with the forward propagation process of
the model, thus eliminating the need to wait for the comple-
tion of both communication steps.

Computation Decomposition. When using tensor paral-
lelism, an AllReduce communication is required to synchro-
nize the matrix multiplication outputs in the forward phase.
CoCoNet [357] facilitates the overlap of matrix multiplica-
tion and AllReduce by partitioning the output into smaller
blocks and immediately initiating the AllReduce kernel after
computing each result block within the matrix multiplica-
tion kernel. To minimize waiting time for the AllReduce
kernel, the data blocks are fed into the matrix multipli-
cation kernel in a carefully scheduled order. T3 [358] ap-
plies a hardware-software co-design approach, which trans-
parently overlaps matrix multiplication with communica-
tion while minimizing resource contention. At the hardware
level, T3 introduces a track-and-trigger mechanism to or-
chestrate the producer’s compute and communication activ-
ities. Additionally, it employs compute-enhanced memories
to handle the attendant compute operations required by the
communication processes.

The backward pass generates two types of gradients: the
output gradient, which is used to calculate the gradients
of the preceding layer, and the weight gradient, which is
used to update the layer’s weight parameters. These weight
gradients need to be synchronized with other ranks using
AllReduce. Conventional frameworks simultaneously per-
form gradient computation for both weights and outputs.
Out-of-order backpropagation (ooo-backprop) [361] decou-
ples the gradient computations for weights and outputs,
scheduling the weight gradient computations flexibly out of
their original order. This allows more critical computations
to be prioritized and scheduled accordingly. Consequently,
ooo-backprop optimizes overall performance by schedul-
ing communications based on this out-of-order computation
strategy. This scheme is also used by Zero Bubble [156] to



28

reduce the bubble rate of pipeline parallelism.
With activation checkpointing enabled, training frame-

works need to recompute activations during the backward
phase. This recomputation also involves AllReduce com-
munication when using tensor parallelism. Oases [359] re-
duces redundant communication in recomputation by al-
ways placing AllReduce communication as the last forward
communication operation of a recomputation unit, and fur-
ther splits the batch into smaller sub-batches, allowing the
communication and computation of two batches to overlap.
Lynx [360] also exploits the potential of recomputation and
communication overlap, using two recomputation schedul-
ing algorithms, OPT and HEU, to search for the optimal or
near-optimal recomputation scheduling strategy, achieving
the best overlap and training performance.

7.3 In-Network Aggregation

In-network aggregation (INA) uses the computational ca-
pabilities of network devices to perform aggregation op-
erations like summing gradients of deep learning models.
This technique has been previously proposed to acceler-
ate big data processing. Notably, frameworks like NetAgg
[369], SwitchAgg [370], and CamDoop [371] have demon-
strated significant performance advantages by executing
data aggregation at switch-attached high-performance mid-
dleboxes or servers within a direct-connect topology. Many
approaches have been proposed to apply in-network aggre-
gation to deep learning model training, aiming to reduce
the data exchanged between nodes during AllReduce oper-
ations on gradients in the backward phase [372].

7.3.1 Ethernet-based Aggregation
Many Ethernet-based in-network aggregation systems de-
pend on programmable switches, and can be leveraged for
distributed LLM training. SwitchML [362] supports offload-
ing collective communication operations to programmable
network switches during the backward phase of distributed
training. Since complete model updates can exceed the stor-
age capacity of a switch, SwitchML streams the aggregation
through the switch, processing the aggregation function on
a limited number of vector elements at a time. There are two
limitations of SwitchML. First, when dealing with floating-
point operations, SwitchML cannot directly perform collec-
tive communications (such as AllReduce ) for floating-point
tensors. Instead, it converts floating-point values into 32-bit
integers using a block floating-point-like approach. Second,
SwitchML is primarily implemented on DPDK, and while
there is an RDMA-capable implementation, it is difficult to
integrate with training frameworks.

To better facilitate distributed model training, FPISA
[363] implements floating-point computation as a P4 [373]
program running directly on a programmable switch. There-
fore, training frameworks could offload collective communi-
cation operations on FP16 tensors to switches without con-
verting them to 32-bit integers. NetReduce [364] supports in-
network aggregation compatible with RoCE, fully utilizing
the congestion control and reliability design of RoCE with-
out the need for costly network protocol processing stacks
in switches. NetReduce is prototyped with an FPGA board
attached to an Ethernet switch. AllReduce-Switch [365] is

closely related to NetReduce and compatible with its net-
work protocol. It introduces a novel switch architecture
tailored for in-network aggregation tasks and has imple-
mented a prototype using FPGA hardware. PANAMA [366]
and ATP [367] have also contributed to the field with their
in-network aggregation frameworks designed for shared en-
vironments. PANAMA focuses on optimizing network load
by managing bandwidth allocation among multiple active
training jobs concurrently. It addresses the challenge that
traditional congestion controls may not adequately support
simultaneous training operations. ATP, on the other hand,
enables multiple concurrent tenants to run several jobs si-
multaneously, emphasizing the support for diverse work-
loads in shared environments.

Certain works are tailored for specific training work-
loads, making them unsuitable for distributed LLM train-
ing. For example, Libra [374] is designed for sparse model
training using a parameter server architecture. It offloads
the aggregation of frequently updated parameters to pro-
grammable switches, leaving infrequently updated param-
eters to be handled by servers. This approach effectively
reduces server load. On the other hand, iSwitch [375] is de-
signed for parameter aggregation in reinforcement learning
training tasks. Although its FPGA-based implementation
supports native floating point operations, it operates at a
significantly lower bandwidth. Furthermore, iSwitch stores
an entire gradient vector during aggregation, which is feasi-
ble for reinforcement learning workloads but does not scale
well for large-scale models, especially LLMs.

7.3.2 Infiniband-based Aggregation
NVIDIA Mellanox’s Scalable Hierarchical Aggregation Pro-
tocol (SHARP) [368] is a proprietary in-network aggrega-
tion scheme available in certain InfiniBand switches and
NVIDIA GPUs. Built on InfiniBand, SHARP leverages link-
layer flow control and lossless guarantees and employs ded-
icated on-chip FPUs for collective offloading. SHARPv1 was
introduced on InfiniBand EDR switches, and SHARPv2 was
enhanced on InfiniBand HDR switches with features such as
support for collective communications (e.g., Barrier, Reduce,
AllReduce and Broadcast), integer and floating-point oper-
ations (16/32/64 bits), and GPUDirect RDMA. SHARPv2
also uses streaming aggregation for large vector reductions
at line rate, integrates with NCCL, and is easily usable by ex-
isting training frameworks. Enabled on the latest InfiniBand
NDR switches, SHARP is production-ready for distributed
LLM training and has been deployed in many training clus-
ters. In addition to Infiniband, NVIDIA’s NVSwitch-v3 [46]
also integrates SHARP to speed up collective operations in
GPU-based clusters.

8 FAULT TOLERANCE

LLM training typically involves extended training periods
ranging from weeks to months, utilizing clusters of tens of
thousands of GPUs. The vast array of components involved,
spanning from the underlying infrastructure to training sys-
tem optimizations, necessitates robust fault tolerance mech-
anisms to ensure the reliability of training processes. This is
because a single point of failure in any part of the system
can result in a suspension of the training process due to the



29

Fa
ul

tT
ol

er
an

ce
fo

r
LL

M
Tr

ai
ni

ng

Anomaly Detection

Statistical Monitoring
Healthd in TPUv4 [376], MegaScale [71], C4 [377],
Vela [378], Unicron [379], Transom [380], NCCLX [9],
NCCL flight recorder [273]

Proactive Validation Lightweight Test in MegaScale [71], SuperBench [381],
Vela [378], Preflight Check in TPUv4 [376]

Checkpointing-Based Recovery

Persistent Checkpoiting

Synchronous: DeepSpeed [22], Varuna [167],
JIT-Checkpointing [382], Flash-Checkpoint [383],
Universal Checkpointing [384]
Snapshot-Stall: Check-N-Run [385],
TorchSnapshot [386]
Asynchronous: DeepFreeze [387], CheckFreq [388],
LightCheck [389], DataStates-LLM [390],
FastPersist [391]

In-Memory Checkpoiting Gemini [392], REFT [393]

Checkpointing-Free Recovery
Live Migration Parcae [394], Oobleck [395]

Module Redundancy Bamboo [396], SlipStream [397], SWARM [231]

Fig. 15: Studies on fault tolerance techniques for distributed LLM training.

synchronous nature of the training. In this section, we first
present a failure analysis in LLM training, then investigate
the approaches for fast failure detection and recovery.

8.1 LLM Failure Analysis

Empirical evidence from various sources underscores the
frequency of failures in LLM training. For example, the
training of Bloom experiences 1-2 GPU failures per week
on average on a cluster with 384 GPUs [292]. Meta’s com-
prehensive training records [398] of 175B OPT model on 992
A100 GPUs document over 40 interruptions within a two-
week period, attributed to hardware, infrastructure, and
other external factors. More recent studies further highlight
this issue. Acme [23] reported failure occurrences every 1-2
days on average in their training process using over 1,000
A100 GPUs. ByteDance’s MegaScale project [71], utilizing
12,288 Ampere GPUs, experiences over 100 times failures
in several weeks. Meta’s LLaMA3 experiences 466 job inter-
ruptions during a 54-day period of pre-training on a cluster
of 16,384 H100 GPUs [9]. The frequent failure is primarily
attributed to the immense complexity and scale of these
systems and extended training periods. The whole training
system encompasses a vast array of components as we in-
vestigated in previous sections. Moreover, the synchronized
training further exacerbates this issue, as errors in any single
node can cause the entire job to fail, making the system par-
ticularly vulnerable to even isolated hardware or software
faults. Even a seemingly low 1.5% daily failure rate for a
single node, as observed in Alibaba’s cluster [383], trans-
lates to a staggering 84.8% daily failure rate when scaled
to a system with 1,000 GPUs. However, the trend of scaling
up the training system continues to grow, emphasizing the
concomitant challenges for fault tolerance mechanisms to
maintain system reliability.

The reasons behind these failures are multifaceted and
stem from various components of the LLM training sys-
tem. According to Acme [23], the most severe impact
comes from hardware failures, such as issues with GPU

(e.g., CUDA-Error, ECC-Error), NVLink, and network sys-
tem (e.g., NCCL-Timeout-Error, Connection-Error). Similar
observations are also delivered in Alibaba C4 [377]. C4
further observes that the majority of errors (about 82.5%)
are confined to specific nodes or even individual devices,
although most errors observed by users are NCCL error.
LLaMA3 pre-training [9] also reports that 78% of the fail-
ures are hardware issues. Moreover, the latest generation
GPUs (A100 and H100) tend to exhibit high error rates,
likely due to rapid development, rushed delivery, and in-
creased power consumption [377], [399]. Beyond hardware,
software-related issues in distributed training frameworks,
data preprocessing pipelines, or library dependencies can
lead to crashes or unexpected behavior [23], [378], [399]. The
complex nature of the models themselves can introduce in-
stabilities such as loss spikes, numerical overflow or under-
flow, gradient explosions, or optimization difficulties [398],
[400]. External factors like power outages or cooling system
failures in data centers further contribute to system instabili-
ties. For example, the high temperature in the cluster server
room also tends to result in GPU overheating, which can
cause NVLink-Error or ECC-Error [23] or unstable training
speed [9].

These high frequent and multifaceted LLM failures lead
to significant waste of GPUs. This inefficiency manifests in
two primary ways: failure recovery and performance degra-
dation. First, LLM training jobs periodically save check-
points during runtime to maintain progress. Upon failure,
system maintainers must first locate and diagnose the issue
before restarting the training by rolling back to previous
checkpoints. Some hardware failures, however, can be chal-
lenging to detect proactively and often require considerable
time to diagnose and recover from, resulting in prolonged
stalls in LLM training. Second, stragglers in the cluster,
caused by network link failures [377] or abnormal computa-
tional slowdowns [71], can significantly decrease the MFU,
further compounding the overall training inefficiency. The
training of Meta’s 175B OPT model exemplifies these ineffi-
ciencies [398]. While the ideal training time was estimated at



30

about 25 days based on the MFU, the actual training lasted
approximately 57 days. This means that a staggering 56% of
the total time was wasted handling various failures, under-
scoring the severe impact of system instabilities on resource
utilization and training efficiency in LLM training.

8.2 Anomaly Detection

Rapid detection and diagnosis of LLM failures are crucial
for maintaining training stability and efficiency. This pro-
cess, known as anomaly detection, primarily employs two
approaches: statistical monitoring and proactive validation.

8.2.1 Statistical Monitoring
Statistical monitoring is a systematic approach to observing
and analyzing various metrics and indicators throughout
the LLM training process. This method involves collecting,
processing, and interpreting data to identify anomalies or
deviations from expected behavior. In a typical setup, each
GPU is assigned a dedicated monitoring process responsible
for collecting basic information and runtime statistics [71],
[378], [379]. These statistics are then transmitted to a central
monitor node as heartbeat messages for further analysis.
Nodes that fail to send heartbeat messages are considered to
have failed. The primary objective of this monitoring system
is to detect anomalies promptly, allowing for quick recovery
that minimize training interruptions and maintain overall
efficiency.

Most runtime statistics monitored in LLM training are
hardware-related, encompassing both GPU and network
metrics. Recent works [71], [378], [379] collect GPU-related
statistics with NVIDIA DCGM [401], including SM block
utilization, SM occupancy, SM pipe utilization, PCIe traf-
fic rate, NVLink traffic rate and etc. One frequently occur-
ring issue is GPU memory row-remapping, which seam-
lessly replaces known degraded memory cells with sparse
ones in hardware. Vela [378] detects this by leveraging
the DCGM_FI_DEV_ROW_REMAP_PENDING statistics from
DCGM. Megascale [71] and Transom [380] also detect errors
by analyzing errors occurred in training logs.

In addition to GPU metrics, network statistics are crucial
for monitoring distributed training performance. MegaS-
cale [71] tracks RDMA traffic metrics to detect potential
anomalies. It also develops visualization system to iden-
tify inefficiency GPUs manually. Unicron [379] detects er-
rors like NCCL timeout, TCP timeout, and task hangs with
delayed notification during training. C4 [377] gathers con-
nection specifics such as RDMA IP and QP numbers, along
with message statistics including counts, sizes, and dura-
tions of transfers at the transport layer to detect training
slowdowns and hangs. Collective communication activities
can also be monitored with PyTorch’s built-in NCCL flight
recorder [273], which captures collective metadata and stack
traces into a ring buffer for later diagnosis. Meta further
co-designs NCCLX [9] with PyTorch, allowing PyTorch to
access its internal state for fast and accurate failure detec-
tion. NCCLX traces the kernel and network activities of each
NCCLX communication, which can help diagnose commu-
nication issues. Vela [378] implements an enhanced Multi-
NIC health checker that collects node network bandwidth
data for all 2-node pairs on every port. This information

can be utilized to detect nodes with degraded RoCE/GDR
performance. Leveraging the key characteristics of LLMs
training as prior knowledge, Transom [380] develops ma-
chine learning algorithms to do anomaly detection.

Statistical monitoring also enables the resiliency of
Google’s TPUv4 supercomputer [376]. Each TPUv4 machine
is equipped with a healthd daemon that performs real-
time monitoring of ICI (Inter-Chip Interconnect) links, PCIe
links and TPU ASIC. Detected severe symptoms will notify
cluster scheduler for appropriate action, such as evicting
affected jobs or rescheduling them.

8.2.2 Proactive Validation
Proactive validation offers an alternative to reactive trou-
bleshooting based on online statistical monitoring, aiming to
validate the training system before failures occur. However,
a trade-off exists between validation test time and accu-
racy, as comprehensive validation can significantly impact
effective training time. MegaScale [71] introduces a suite of
lightweight tests, including intra-network host and NCCL
tests, to diagnose a wide spectrum of potential failures.
Vela [378] employs a two-tiered strategy with lightweight
tests running periodically on every node and more intrusive
tests executed only when nodes are idle. Google’s TPUv4 su-
percomputer implements a preflight check [376] before user
jobs, consisting of an end-to-end check and an intent-driven
checker for hardware health. SuperBench [381] resents a
comprehensive benchmark suite for evaluating individual
hardware components, incorporating a selector to balance
validation time against potential issue-related penalties.

8.3 Checkpoint-Based Recovery

Periodically saving the model states, i.e., checkpointing, and
resuming computation from the latest checkpoint after fail-
ures happen is the common practice for fault tolerant LLM
training. However, this presents a dilemma: frequent check-
pointing incurs high I/O overhead, while infrequent check-
pointing results in substantial progress loss when failures
occur. To address this dilemma, fast persistent and in-
memory checkpointing approaches have been designed.

8.3.1 Persistent Checkpointing
Persistent checkpointing involves saving model states to
non-volatile storage, e.g. SSD and remote cloud storage, en-
suring data persistence across system failures. The process
typically consists of two phases: first, the snapshot phase
copies model states from GPU to CPU memory, and second,
the persist phase writes the snapshots to persistent storage
devices. Despite considerable I/O overhead due to the low
bandwidth of storage devices, persistent checkpointing re-
mains a widely used approach for fault tolerance due to
its ease-of-use and reliability. Advanced persistent check-
pointing approaches have been proposed to reduce training
stall, thereby enabling more frequent checkpointing without
significant performance penalties.

Synchronous Checkpointing. To keep consistency of
model parameters, DeepSpeed’s default synchronous check-
pointing [22] and Varuna [167] periodically stalls the train-
ing process to perform checkpointing to persistent storage



31

synchronously on data parallel rank 0. This approach re-
sults in GPU idle time during both the snapshot and persist
phases, leading to resource underutilization. Recognizing
that most failures are attributable to a single GPU or net-
work device, JIT-Checkpointing [382] proposes an alterna-
tive strategy. It takes just-in-time checkpoints immediately
after failures occur, allowing training to resume from these
JIT checkpoints. This approach significantly reduces the cost
of wasted GPU time, limiting it to at most one mini-batch
iteration of work. DLRover Flash-Checkpoint [383] acceler-
ates the migration efficiency utilizing a distributed caching
service. Universal Checkpointing [384] introduces a univer-
sal checkpoint representation to decouple the distributed
checkpoints storage from parallelism techniques. Universal
Checkpointing can seamlessly transform checkpoints from
one parallelization strategy to another upon demands.

Snapshot-Stall Checkpointing. To reduce LLM training
stalls while maintaining checkpoint consistency, Check-N-
Run [385] decouples the snapshot and persist phases. It
achieves atomic checkpointing by stalling training only dur-
ing the snapshot phase and asynchronously persisting snap-
shots using dedicated background CPU processes. Torch-
Snapshot [386] further optimizes this process through ten-
sor chunking and multi-threaded disk writing. By creating
chunked snapshots, TorchSnapshot allows the persist phase
to begin earlier through parallel writing, thereby reducing
overall training stall time. MegaScale [71] and InternEvo [18]
also adopt a snapshot-stall approach for fast checkpointing
and recovery. The snapshot phase stalls training for several
seconds to capture the model states, while the persist phase
asynchronously transfers checkpoints from CPU memory
to a distributed file system. MegaScale optimizes the re-
covery process by designating a single worker within the
data parallel group to read from the distributed file system,
thus mitigating the low bandwidth bottleneck. This worker
then broadcasts the checkpoint data to other GPUs, enabling
faster and more efficient recovery across the entire system.
To save storage space, InternEvo also asynchronously moves
checkpoints from expensive hot storage to cheaper cold stor-
age.

Asynchronous Checkpointing. Asynchronous checkpoint-
ing aims to minimize training stall by executing the snap-
shot and persist phases concurrently with training. Deep-
Freeze [387] applies both lightweight (snapshot) and heavy
(persist) persistence strategies in the background, shard-
ing checkpoints across data-parallel GPUs to distribute I/O
workload. CheckFreq [388] carefully pipelines the snapshot
and persist phases with subsequent iteration’s forward and
backward passes, ensuring snapshot completion before the
next parameter update. It also dynamically tunes check-
pointing frequency to balance recovery costs and runtime
overhead. LightCheck [389] exploits inter-iteration data de-
pendencies, introducing layer-wise checkpointing pipeline
to reduce stall. DataStates-LLM [390] addresses slow host
memory allocation by pre-allocating pinned host memory
for snapshots and utilizes efficient computation, snapshot,
and persist layer-wise pipelining. FastPersist [391] identifies
risks in fully asynchronous persist phases and synchronizes
them with the next iteration’s parameter update. It im-
proves SSD bandwidth utilization through double-buffering

pinned memory and reduces hardware contention by using
a subset of data-parallel ranks for checkpoint writing.

8.3.2 In-Memory Checkpointing
The low bandwidth of remote persistent storage severely
restricts the frequency of checkpointing, in-memory check-
pointing addresses the limitations by storing checkpoints
in the memory of other compute nodes or dedicated in-
memory storage systems, significantly reducing I/O over-
head and enabling higher checkpointing frequencies. Gem-
ini [392] proposes checkpointing to CPU memory for faster
failure recovery, along with a checkpoint placement strat-
egy to minimize checkpoint loss and a traffic scheduling
algorithm to reduce interference with training. REFT [393]
asynchronously caches model states to host memory and in-
memory storage like Redis, bypassing checkpoint I/O and
enabling high checkpointing frequency. It also leverages era-
sure coding to implement RAIM5 (inspired by RAID5 with
“Disk” replaced by “Memory”) that protects data against
node failures. While these approaches significantly advance
fault tolerance for LLM training by enabling more frequent
checkpointing without performance penalties, they may not
provide the same long-term data persistence as traditional
storage-based methods. Consequently, hybrid approaches
combining both in-memory and persistent checkpointing is
necessary for comprehensive fault tolerance strategies.

8.4 Checkpoint-Free Recovery
Checkpoint-free recovery methods aim to minimize training
stalls by eliminating the need to restart and roll back to
previous checkpoints when failures occur. These techniques
depend on automatic failure detection mechanisms to iden-
tify issues promptly. When a failure is detected, checkpoint-
free approaches automatically address the problem and al-
low the training process to continue without interruption.
By avoiding the time-consuming process of loading from a
checkpoint and repeating computations, these methods can
significantly reduce downtime and improve overall train-
ing efficiency. Checkpoint-free recovery strategies can be
broadly categorized into two main approaches: live migra-
tion and module redundancy.

8.4.1 Live Migration
Live migration leverages the inherent redundancy present
in distributed LLM training setups, particularly the model
replicas across different data parallel pipelines, to restore
model states in case of failure. When a failure is detected,
live migration approaches dynamically reconfigure the par-
allelization strategy using the remaining healthy instances
or by incorporating new instances into the training clus-
ter. The current model states are then transferred to these
reconfigured nodes, allowing the training process to con-
tinue with minimal interruption. Parcae [394] proposes three
distinct migration mechanisms, each with different commu-
nication overheads, to efficiently transfer model states be-
tween varying parallelization strategies. Oobleck [395] takes
a pipeline template-based approach to live migration. It
maintains a set of predefined pipeline templates and, upon
detecting a failure, swiftly instantiates new heterogeneous
pipelines based on these templates.



32

8.4.2 Module Redundancy

Module redundancy, like live migration, also leverages the
redundancy of model states. However, instead of restoring
the latest model states across different GPUs, this approach
continues training by routing computation to redundant
modules. Bamboo [396] places a redundant pipeline stage in
the GPU holding an adjacent pipeline stage within the same
pipeline. This redundant stage performs redundant compu-
tations during training, utilizing pipeline bubbles, and is
activated as a normal stage upon failure. SlipStream [397]
leverages the redundancy across model replica pipelines,
routing the computation of failed nodes to nodes in differ-
ent data parallel pipelines. SWARM [231] proposes a simi-
lar solution but focuses more on poorly connected, hetero-
geneous, and unreliable devices. In addition to redundant
computation, SWARM also incorporates instance migration
to rebalance the pipeline, combining aspects of both redun-
dant computation and live migration approaches.

9 CONCLUSION AND OUTLOOKS

The rise of LLMs has transformed AI, enabling applications
like personal assistants, code generation, and scientific re-
search. Models such as GPT, LLaMA, and Gemini have set
new standards, but training these massive models, exempli-
fied by LLaMA-3’s 54-day process on 16,384 GPUs, presents
challenges in scalability, efficiency, and reliability. Managing
vast GPU clusters requires innovative hardware and net-
working solutions. Efficient training demands optimizing
computation, communication, and memory use. Reliability
involves robust mechanisms to detect and recover from fail-
ures over long training periods. This survey reviews recent
advancements in LLM training systems and infrastructure,
highlighting approaches to enhance scalability, efficiency,
and reliability.

Traditional digital circuit-based computing systems,
guided by Moore’s Law and Dennard Scaling, are facing
significant physical and economic constraints in meeting the
computational demands for training and deploying LLMs.
Consequently, the AI industry necessitates innovative solu-
tions. One promising approach is large-scale optoelectronic
integration technology, which replaces traditional digital cir-
cuits with integrated silicon photonics to enhance computa-
tional and communication capabilities [402]. This optoelec-
tronic hybrid data center technology combines optical com-
puting with optical networks, increasing single-node com-
puting power and the efficiency of large-scale distributed
computing. Several works have proposed leveraging optical
networks for LLM training. For instance, TopoOpt [67] opti-
mizes both the optical network topology and parallelization
strategies in distributed training, enhancing computational
and communication efficiency. TPUv4 [42] uses Optical Cir-
cuit Switches to dynamically reconfigure its 3D-Torus in-
terconnect topology, improving data flow for the inten-
sive communication patterns in LLM training. Additionally,
Taichi [403] explores a distributed diffractive-interference
hybrid photonic computing architecture to effectively scale
the optical neural network to the million-neuron level with
160 tera-operations per second per watt (TOPS/W) energy
efficiency. The future may necessitate a paradigm shift in

LLM training and inference towards silicon photonics. How-
ever, this transition will require extensive innovation across
system design and implementation.

REFERENCES

[1] X. L. Dong, S. Moon, Y. E. Xu, K. Malik, and Z. Yu, “Towards
next-generation intelligent assistants leveraging llm techniques,”
in Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2023, pp. 5792–5793.

[2] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Eval-
uating large language models trained on code,” arXiv preprint
arXiv:2107.03374, 2021.

[3] M. Liu, T.-D. Ene, R. Kirby, C. Cheng, N. Pinckney, R. Liang,
J. Alben, H. Anand, S. Banerjee, I. Bayraktaroglu et al., “Chip-
nemo: Domain-adapted llms for chip design,” arXiv preprint
arXiv:2311.00176, 2023.

[4] A. Jo, “The promise and peril of generative ai,” Nature, vol. 614,
no. 1, pp. 214–216, 2023.

[5] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever
et al., “Language models are unsupervised multitask learners,”
OpenAI blog, vol. 1, no. 8, p. 9, 2019.

[6] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi,
Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al.,
“Llama 2: Open foundation and fine-tuned chat models,” arXiv
preprint arXiv:2307.09288, 2023.

[7] G. Team, R. Anil, S. Borgeaud, Y. Wu, J.-B. Alayrac, J. Yu,
R. Soricut, J. Schalkwyk, A. M. Dai, A. Hauth et al., “Gemini:
a family of highly capable multimodal models,” arXiv preprint
arXiv:2312.11805, 2023.

[8] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess,
R. Child, S. Gray, A. Radford, J. Wu, and D. Amodei,
“Scaling laws for neural language models,” arXiv preprint
arXiv:2001.08361, 2020.

[9] LlamaTeam. (2024) The llama 3 herd of models. [On-
line]. Available: https://ai.meta.com/research/publications/
the-llama-3-herd-of-models

[10] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[11] N. Shazeer, “Fast transformer decoding: One write-head is all
you need,” arXiv preprint arXiv:1911.02150, 2019.

[12] J. Ainslie, J. Lee-Thorp, M. de Jong, Y. Zemlyanskiy, F. Lebrón,
and S. Sanghai, “GQA: Training Generalized Multi-Query Trans-
former Models from Multi-Head Checkpoints,” arXiv.org, 2023.

[13] DeepSeek-AI, “Deepseek-v2: A strong, economical, and ef-
ficient mixture-of-experts language model,” arXiv preprint
arXiv:2405.04434, 2024.

[14] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adap-
tive mixtures of local experts,” Neural computation, vol. 3, no. 1,
pp. 79–87, 1991.

[15] D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang,
M. Krikun, N. Shazeer, and Z. Chen, “Gshard: Scaling giant mod-
els with conditional computation and automatic sharding,” arXiv
preprint arXiv:2006.16668, 2020.

[16] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” in 3rd International
Conference on Learning Representations, ser. ICLR ’15, 2015.

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the
IEEE, 1998.

[18] Z. Cai, M. Cao, H. Chen, K. Chen, K. Chen, X. Chen, X. Chen,
Z. Chen, Z. Chen, P. Chu et al., “Internlm2 technical report,” arXiv
preprint arXiv:2403.17297, 2024.

[19] T. Sun, X. Zhang, Z. He, P. Li, Q. Cheng, X. Liu, H. Yan, Y. Shao,
Q. Tang, S. Zhang et al., “Moss: An open conversational large
language model,” Machine Intelligence Research, pp. 1–18, 2024.

[20] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and
B. Catanzaro, “Megatron-lm: Training multi-billion parame-
ter language models using model parallelism,” arXiv preprint
arXiv:1909.08053, 2019.

[21] L. Zheng, Z. Li, H. Zhang, Y. Zhuang, Z. Chen, Y. Huang,
Y. Wang, Y. Xu, D. Zhuo, E. P. Xing et al., “Alpa: Automating inter-
and {Intra-Operator} parallelism for distributed deep learning,”
in 16th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 22), 2022, pp. 559–578.

https://ai.meta.com/research/publications/the-llama-3-herd-of-models
https://ai.meta.com/research/publications/the-llama-3-herd-of-models


33

[22] J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He, “Deepspeed:
System optimizations enable training deep learning models with
over 100 billion parameters,” in Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2020, pp. 3505–3506.

[23] Q. Hu, Z. Ye, Z. Wang, G. Wang, M. Zhang, Q. Chen, P. Sun,
D. Lin, X. Wang, Y. Luo et al., “Characterization of large language
model development in the datacenter,” in 21st USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 24),
2024, pp. 709–729.

[24] C. Zhou, Q. Li, C. Li, J. Yu, Y. Liu, G. Wang, K. Zhang, C. Ji,
Q. Yan, L. He et al., “A comprehensive survey on pretrained
foundation models: A history from bert to chatgpt,” arXiv preprint
arXiv:2302.09419, 2023.

[25] Y. Huang, J. Xu, Z. Jiang, J. Lai, Z. Li, Y. Yao, T. Chen, L. Yang,
Z. Xin, and X. Ma, “Advancing transformer architecture in long-
context large language models: A comprehensive survey,” arXiv
preprint arXiv:2311.12351, 2023.

[26] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min,
B. Zhang, J. Zhang, Z. Dong et al., “A survey of large language
models,” arXiv preprint arXiv:2303.18223, 2023.

[27] S. Zhang, L. Dong, X. Li, S. Zhang, X. Sun, S. Wang, J. Li, R. Hu,
T. Zhang, F. Wu, and G. Wang, “Instruction Tuning for Large
Language Models: A Survey,” arXiv preprint arXiv:2308.10792,
2023.

[28] Y. Wang, W. Zhong, L. Li, F. Mi, X. Zeng, W. Huang, L. Shang,
X. Jiang, and Q. Liu, “Aligning large language models with hu-
man: A survey,” arXiv preprint arXiv:2307.12966, 2023.

[29] Z. Wan, X. Wang, C. Liu, S. Alam, Y. Zheng, J. Liu, Z. Qu, S. Yan,
Y. Zhu, Q. Zhang, M. Chowdhury, and M. Zhang, “Efficient Large
Language Models: A Survey,” arXiv.2312.03863, 2023.

[30] Y. Liu, H. He, T. Han, X. Zhang, M. Liu, J. Tian, Y. Zhang,
J. Wang, X. Gao, T. Zhong et al., “Understanding llms: A com-
prehensive overview from training to inference,” arXiv preprint
arXiv:2401.02038, 2024.

[31] M. Xu, W. Yin, D. Cai, R. Yi, D. Xu, Q. Wang, B. Wu,
Y. Zhao, C. Yang, S. Wang, Q. Zhang, Z. Lu, L. Zhang,
S. Wang, Y. Li, Y. Liu, X. Jin, and X. Liu, “A Survey of
Resource-efficient LLM and Multimodal Foundation Models,”
arXiv preprint arXiv:2401.08092, 2024.

[32] X. Zhu, J. Li, Y. Liu, C. Ma, and W. Wang, “A survey on
model compression for large language models,” arXiv preprint
arXiv:2308.07633, 2023.

[33] Z. Han, C. Gao, J. Liu, S. Q. Zhang et al., “Parameter-efficient fine-
tuning for large models: A comprehensive survey,” arXiv preprint
arXiv:2403.14608, 2024.

[34] X. He, F. Xue, X. Ren, and Y. You, “Large-scale deep learn-
ing optimizations: A comprehensive survey,” arXiv preprint
arXiv:2111.00856, 2021.

[35] R. Mayer and H.-A. Jacobsen, “Scalable deep learning on dis-
tributed infrastructures: Challenges, techniques, and tools,” ACM
Computing Surveys (CSUR), vol. 53, no. 1, pp. 1–37, 2020.

[36] P. Liang, Y. Tang, X. Zhang, Y. Bai, T. Su, Z. Lai, L. Qiao, and
D. Li, “A survey on auto-parallelism of large-scale deep learning
training,” IEEE Transactions on Parallel and Distributed Systems,
vol. 34, no. 8, pp. 2377–2390, 2023.

[37] NVIDIA. NVIDIA Ampere Architecture. [On-
line]. Available: https://www.nvidia.com/en-us/data-center/
ampere-architecture

[38] ——. NVIDIA Hopper Architecture. [On-
line]. Available: https://www.nvidia.com/en-us/data-center/
technologies/hopper-architecture

[39] ——. NVIDIA Blackwell Architecture. [On-
line]. Available: https://www.nvidia.com/en-us/data-center/
technologies/blackwell-architecture

[40] R. Swaminathan, M. J. Schulte, B. Wilkerson, G. H. Loh, A. Smith,
and N. James, “Amd instinct tm mi250x accelerator enabled by
elevated fanout bridge advanced packaging architecture,” in 2023
IEEE Symposium on VLSI Technology and Circuits (VLSI Technology
and Circuits). IEEE, 2023, pp. 1–2.

[41] Habana. (2023) Gaudi training platform white paper. [Online].
Available: https://www.intel.com/content/www/us/en/
content-details/784830/gaudi-training-platform-white-paper.
html

[42] N. Jouppi, G. Kurian, S. Li, P. Ma, R. Nagarajan, L. Nai, N. Patil,
S. Subramanian, A. Swing, B. Towles et al., “Tpu v4: An optically
reconfigurable supercomputer for machine learning with hard-

ware support for embeddings,” in Proceedings of the 50th Annual
International Symposium on Computer Architecture, 2023, pp. 1–14.

[43] M. Emani, S. Foreman, V. Sastry, Z. Xie, S. Raskar, W. Arnold,
R. Thakur, V. Vishwanath, and M. E. Papka, “A comprehensive
performance study of large language models on novel ai acceler-
ators,” arXiv preprint arXiv:2310.04607, 2023.

[44] J.-P. Fricker, “The cerebras cs-2: Designing an ai accelerator
around the world’s largest 2.6 trillion transistor chip,” in Proceed-
ings of the 2022 International Symposium on Physical Design, 2022,
pp. 71–71.

[45] NVIDIA, “Nvidia dgx-1 system architecture white paper,”
NVIDIA, White Paper, 2017.

[46] J. Choquette, E. Lee, R. Krashinsky, V. Balan, and B. Khailany,
“3.2 the a100 datacenter gpu and ampere architecture,” in 2021
IEEE International Solid-State Circuits Conference (ISSCC), vol. 64.
IEEE, 2021, pp. 48–50.

[47] S. Naffziger, K. Lepak, M. Paraschou, and M. Subramony, “2.2
amd chiplet architecture for high-performance server and desk-
top products,” in 2020 IEEE International Solid-State Circuits
Conference-(ISSCC). IEEE, 2020, pp. 44–45.

[48] N. P. Jouppi, D. H. Yoon, G. Kurian, S. Li, N. Patil, J. Laudon,
C. Young, and D. Patterson, “A domain-specific supercomputer
for training deep neural networks,” Communications of the ACM,
vol. 63, no. 7, pp. 67–78, 2020.

[49] T. Norrie, N. Patil, D. H. Yoon, G. Kurian, S. Li, J. Laudon,
C. Young, N. P. Jouppi, and D. A. Patterson, “Google’s training
chips revealed: Tpuv2 and tpuv3.” in Hot Chips Symposium, 2020,
pp. 1–70.

[50] G. Shainer, A. Ayoub, P. Lui, T. Liu, M. Kagan, C. R. Trott,
G. Scantlen, and P. S. Crozier, “The development of mel-
lanox/nvidia gpudirect over infiniband—a new model for gpu
to gpu communications,” Computer Science-Research and Develop-
ment, vol. 26, pp. 267–273, 2011.

[51] G. F. Pfister, “An introduction to the infiniband architecture,”
High performance mass storage and parallel I/O, vol. 42, no. 617-632,
p. 10, 2001.

[52] Infiniband Trade Association, “Supplement to infiniband archi-
tecture specification volume 1 release 1.2.2 annex a16,” pp. 1–17,
2010.

[53] ——, “Supplement to infiniband architecture specification vol-
ume 1 release 1.2.2 annex a17,” pp. 1–17, 2010.

[54] RDMA Consortium. Architectural Specifications for RDMA over
TCP/IP . [Online]. Available: http://www.rdmaconsortium.org

[55] C. Clos, “A study of non-blocking switching networks,” Bell Sys-
tem Technical Journal, vol. 32, no. 2, pp. 406–424, 1953.

[56] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
and S. Lu, “Bcube: a high performance, server-centric network
architecture for modular data centers,” in Proceedings of the ACM
SIGCOMM 2009 conference on Data communication, 2009, pp. 63–
74.

[57] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: a
scalable and fault-tolerant network structure for data centers,” in
Proceedings of the ACM SIGCOMM 2008 conference on Data commu-
nication, 2008, pp. 75–86.

[58] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Net-
working data centers randomly,” in 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 12), 2012, pp.
225–238.

[59] J. Duato, S. Yalamanchili, and L. Ni, Interconnection networks.
Morgan Kaufmann, 2003.

[60] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven,
highly-scalable dragonfly topology,” ACM SIGARCH Computer
Architecture News, vol. 36, no. 3, pp. 77–88, 2008.

[61] A. Shpiner, Z. Haramaty, S. Eliad, V. Zdornov, B. Gafni, and E. Za-
havi, “Dragonfly+: Low cost topology for scaling datacenters,” in
2017 IEEE 3rd International Workshop on High-Performance Intercon-
nection Networks in the Exascale and Big-Data Era (HiPINEB). IEEE,
2017, pp. 1–8.

[62] K. Mandakolathur and S. Jeaugey. (2018) Doubling all2all
performance with nvidia collective communication library
2.12. [Online]. Available: https://developer.nvidia.com/blog/
nvswitch-leveraging-nvlink-to-maximum-effect/

[63] K. Qian, Y. Xi, J. Cao, J. Gao, Y. Xu, Y. Guan, B. Fu, X. Shi, F. Zhu,
R. Miao et al., “Alibaba hpn: A data center network for large
language model training,” in Proceedings of the ACM SIGCOMM
2024 Conference, 2024.

https://www.nvidia.com/en-us/data-center/ampere-architecture
https://www.nvidia.com/en-us/data-center/ampere-architecture
https://www.nvidia.com/en-us/data-center/technologies/hopper-architecture
https://www.nvidia.com/en-us/data-center/technologies/hopper-architecture
https://www.nvidia.com/en-us/data-center/technologies/blackwell-architecture
https://www.nvidia.com/en-us/data-center/technologies/blackwell-architecture
https://www.intel.com/content/www/us/en/content-details/784830/gaudi-training-platform-white-paper.html
https://www.intel.com/content/www/us/en/content-details/784830/gaudi-training-platform-white-paper.html
https://www.intel.com/content/www/us/en/content-details/784830/gaudi-training-platform-white-paper.html
http://www.rdmaconsortium.org
https://developer.nvidia.com/blog/nvswitch-leveraging-nvlink-to-maximum-effect/
https://developer.nvidia.com/blog/nvswitch-leveraging-nvlink-to-maximum-effect/


34

[64] W. Wang, M. Ghobadi, K. Shakeri, Y. Zhang, and N. Hasani, “Op-
timized network architectures for large language model train-
ing with billions of parameters,” arXiv preprint arXiv:2307.12169,
2023.

[65] T. Hoefler, T. Bonato, D. De Sensi, S. Di Girolamo, S. Li, M. Hed-
des, J. Belk, D. Goel, M. Castro, and S. Scott, “Hammingmesh:
a network topology for large-scale deep learning,” in SC22: In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2022, pp. 1–18.

[66] M. Khani, M. Ghobadi, M. Alizadeh, Z. Zhu, M. Glick,
K. Bergman, A. Vahdat, B. Klenk, and E. Ebrahimi, “Sip-ml: high-
bandwidth optical network interconnects for machine learning
training,” in Proceedings of the 2021 ACM SIGCOMM 2021 Confer-
ence, 2021, pp. 657–675.

[67] W. Wang, M. Khazraee, Z. Zhong, M. Ghobadi, Z. Jia, D. Mudi-
gere, Y. Zhang, and A. Kewitsch, “{TopoOpt}: Co-optimizing
network topology and parallelization strategy for distributed
training jobs,” in 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23), 2023, pp. 739–767.

[68] C. Hopps. (2000) Analysis of an equal-cost multi-path
algorithm. [Online]. Available: https://www.rfc-editor.org/rfc/
rfc2992.html

[69] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella, “On the impact
of packet spraying in data center networks,” in 2013 proceedings
ieee infocom. IEEE, 2013, pp. 2130–2138.

[70] V. Addanki, P. Goyal, and I. Marinos, “Challenging the need for
packet spraying in large-scale distributed training,” arXiv preprint
arXiv:2407.00550, 2024.

[71] Z. Jiang, H. Lin, Y. Zhong, Q. Huang, Y. Chen, Z. Zhang, Y. Peng,
X. Li, C. Xie, S. Nong et al., “{MegaScale}: Scaling large language
model training to more than 10,000 {GPUs},” in 21st USENIX
Symposium on Networked Systems Design and Implementation (NSDI
24), 2024, pp. 745–760.

[72] IEEE. 802.1qbb – priority-based flow control. [Online]. Available:
https://1.ieee802.org/dcb/802-1qbb

[73] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel,
M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall, and D. Zats,
“Timely: Rtt-based congestion control for the datacenter,” ACM
SIGCOMM Computer Communication Review, vol. 45, no. 4, pp.
537–550, 2015.

[74] G. Kumar, N. Dukkipati, K. Jang, H. M. Wassel, X. Wu, B. Mon-
tazeri, Y. Wang, K. Springborn, C. Alfeld, M. Ryan et al., “Swift:
Delay is simple and effective for congestion control in the data-
center,” in Proceedings of the Annual conference of the ACM Special
Interest Group on Data Communication on the applications, technolo-
gies, architectures, and protocols for computer communication, 2020,
pp. 514–528.

[75] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron,
J. Padhye, S. Raindel, M. H. Yahia, and M. Zhang, “Conges-
tion control for large-scale rdma deployments,” ACM SIGCOMM
Computer Communication Review, vol. 45, no. 4, pp. 523–536, 2015.

[76] Y. Zhu, M. Ghobadi, V. Misra, and J. Padhye, “Ecn or delay:
Lessons learnt from analysis of dcqcn and timely,” in Proceed-
ings of the 12th International on Conference on emerging Networking
EXperiments and Technologies, 2016, pp. 313–327.

[77] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh et al., “Hpcc: High precision
congestion control,” in Proceedings of the ACM special interest group
on data communication, 2019, pp. 44–58.

[78] V. Olteanu, H. Eran, D. Dumitrescu, A. Popa, C. Baciu, M. Silber-
stein, G. Nikolaidis, M. Handley, and C. Raiciu, “An edge-queued
datagram service for all datacenter traffic,” in 19th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 22),
2022, pp. 761–777.

[79] P. Taheri, D. Menikkumbura, E. Vanini, S. Fahmy, P. Eugster, and
T. Edsall, “Rocc: robust congestion control for rdma,” in Pro-
ceedings of the 16th International conference on emerging networking
experiments and technologies, 2020, pp. 17–30.

[80] S. Rajasekaran, S. Narang, A. A. Zabreyko, and M. Ghobadi,
“Mltcp: Congestion control for dnn training,” arXiv preprint
arXiv:2402.09589, 2024.

[81] S. Rajasekaran, M. Ghobadi, and A. Akella,
“{CASSINI}:{Network-Aware} job scheduling in machine
learning clusters,” in 21st USENIX Symposium on Networked
Systems Design and Implementation (NSDI 24), 2024, pp. 1403–
1420.

[82] H. Wang, H. Tian, J. Chen, X. Wan, J. Xia, G. Zeng, W. Bai, J. Jiang,
Y. Wang, and K. Chen, “Towards {Domain-Specific} network
transport for distributed {DNN} training,” in 21st USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 24),
2024, pp. 1421–1443.

[83] S. Pan, T. Stavrinos, Y. Zhang, A. Sikaria, P. Zakharov, A. Sharma,
M. Shuey, R. Wareing, M. Gangapuram, G. Cao et al., “Facebook’s
tectonic filesystem: Efficiency from exascale,” in 19th USENIX
Conference on File and Storage Technologies (FAST 21), 2021, pp.
217–231.

[84] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in 2010 IEEE 26th symposium on mass
storage systems and technologies (MSST). Ieee, 2010, pp. 1–10.

[85] S. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in
Proceedings of the 7th Conference on Operating Systems Design and
Implementation (OSDI’06), 2006, pp. 307–320.

[86] P. Schwan et al., “Lustre: Building a file system for 1000-node
clusters,” in Proceedings of the 2003 Linux symposium, vol. 2003,
2003, pp. 380–386.

[87] F. Schmuck and R. Haskin, “{GPFS}: A {Shared-Disk} file sys-
tem for large computing clusters,” in Conference on file and storage
technologies (FAST 02), 2002.

[88] F. Chowdhury, Y. Zhu, T. Heer, S. Paredes, A. Moody, R. Gold-
stone, K. Mohror, and W. Yu, “I/o characterization and perfor-
mance evaluation of beegfs for deep learning,” in Proceedings of
the 48th International Conference on Parallel Processing, 2019, pp.
1–10.

[89] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Tachyon:
Reliable, memory speed storage for cluster computing frame-
works,” in Proceedings of the ACM Symposium on Cloud Computing,
2014, pp. 1–15.

[90] JuiceFS. Juicefs: A High-Performance, Cloud-Native, Distributed
File System . [Online]. Available: https://github.com/juicedata/
juicefs

[91] A. V. Kumar and M. Sivathanu, “Quiver: An informed storage
cache for deep learning,” in 18th USENIX Conference on File and
Storage Technologies (FAST 20), 2020, pp. 283–296.

[92] R. Gu, K. Zhang, Z. Xu, Y. Che, B. Fan, H. Hou, H. Dai, L. Yi,
Y. Ding, G. Chen et al., “Fluid: Dataset abstraction and elastic
acceleration for cloud-native deep learning training jobs,” in 2022
IEEE 38th International Conference on Data Engineering (ICDE).
IEEE, 2022, pp. 2182–2195.

[93] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon, J. Qian, H. Liu,
and C. Guo, “Tiresias: A {GPU} cluster manager for distributed
deep learning,” in 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19), 2019, pp. 485–500.

[94] K. Mahajan, A. Balasubramanian, A. Singhvi, S. Venkataraman,
A. Akella, A. Phanishayee, and S. Chawla, “Themis: Fair and
efficient {GPU} cluster scheduling,” in 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20), 2020,
pp. 289–304.

[95] D. Gu, Y. Zhao, Y. Zhong, Y. Xiong, Z. Han, P. Cheng, F. Yang,
G. Huang, X. Jin, and X. Liu, “Elasticflow: An elastic serverless
training platform for distributed deep learning,” in Proceedings of
the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2, 2023, pp.
266–280.

[96] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phanishayee,
and M. Zaharia, “Heterogeneity-Aware Cluster Scheduling Poli-
cies for Deep Learning Workloads,” in 14th USENIX Symposium
on Operating Systems Design and Implementation, ser. OSDI ’20.
USENIX Association, 2020, pp. 481–498.

[97] S. Chaudhary, R. Ramjee, M. Sivathanu, N. Kwatra, and
S. Viswanatha, “Balancing efficiency and fairness in heteroge-
neous gpu clusters for deep learning,” in Proceedings of the Fif-
teenth European Conference on Computer Systems, ser. EuroSys ’20.
Association for Computing Machinery, 2020.

[98] Q. Weng, L. Yang, Y. Yu, W. Wang, X. Tang, G. Yang,
and L. Zhang, “Beware of fragmentation: Scheduling GPU-
Sharing workloads with fragmentation gradient descent,” in
2023 USENIX Annual Technical Conference, ser. USENIX ATC ’23.
USENIX Association, 2023, pp. 995–1008.

[99] Q. Hu, M. Zhang, P. Sun, Y. Wen, and T. Zhang, “Lucid: A non-
intrusive, scalable and interpretable scheduler for deep learn-
ing training jobs,” in Proceedings of the 28th ACM International

https://www.rfc-editor.org/rfc/rfc2992.html
https://www.rfc-editor.org/rfc/rfc2992.html
https://1.ieee802.org/dcb/802-1qbb
https://github.com/juicedata/juicefs
https://github.com/juicedata/juicefs


35

Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2, 2023, pp. 457–472.

[100] A. Qiao, S. K. Choe, S. J. Subramanya, W. Neiswanger, Q. Ho,
H. Zhang, G. R. Ganger, and E. P. Xing, “Pollux: Co-adaptive
cluster scheduling for goodput-optimized deep learning,” in 15th
USENIX Symposium on Operating Systems Design and Implementa-
tion, ser. OSDI ’21. USENIX Association, 2021, pp. 1–18.

[101] S. Jayaram Subramanya, D. Arfeen, S. Lin, A. Qiao, Z. Jia, and
G. R. Ganger, “Sia: Heterogeneity-aware, goodput-optimized ml-
cluster scheduling,” in Proceedings of the 29th Symposium on Oper-
ating Systems Principles, 2023, pp. 642–657.

[102] C. Xue, W. Cui, H. Zhao, Q. Chen, S. Zhang, P. Yang, J. Yang,
S. Li, and M. Guo, “A codesign of scheduling and parallelization
for large model training in heterogeneous clusters,” arXiv preprint
arXiv:2403.16125, 2024.

[103] Q. Hu, Z. Ye, M. Zhang, Q. Chen, P. Sun, Y. Wen, and T. Zhang,
“Hydro: Surrogate-Based hyperparameter tuning service in data-
centers,” in 17th USENIX Symposium on Operating Systems Design
and Implementation, ser. OSDI ’23. USENIX Association, 2023.

[104] M. Blöcher, L. Wang, P. Eugster, and M. Schmidt, “Switches
for hire: Resource scheduling for data center in-network com-
puting,” in Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2021, pp. 268–285.

[105] H. Zhao, Z. Han, Z. Yang, Q. Zhang, M. Li, F. Yang, Q. Zhang,
B. Li, Y. Yang, L. Qiu et al., “Silod: A co-design of caching and
scheduling for deep learning clusters,” in Proceedings of the Eigh-
teenth European Conference on Computer Systems, 2023, pp. 883–898.

[106] J. Mohan, A. Phanishayee, J. Kulkarni, and V. Chidambaram,
“Looking beyond {GPUs} for {DNN} scheduling on {Multi-
Tenant} clusters,” in 16th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 22), 2022, pp. 579–596.

[107] S. Choi, I. Koo, J. Ahn, M. Jeon, and Y. Kwon, “{EnvPipe}:
Performance-preserving {DNN} training framework for saving
energy,” in 2023 USENIX Annual Technical Conference (USENIX
ATC 23), 2023, pp. 851–864.

[108] J. You, J.-W. Chung, and M. Chowdhury, “Zeus: Understanding
and Optimizing GPU Energy Consumption of DNN Training,”
in Proc. USENIX NSDI, 2023.

[109] J.-W. Chung, Y. Gu, I. Jang, L. Meng, N. Bansal, and M. Chowd-
hury, “Perseus: Removing energy bloat from large model train-
ing,” arXiv preprint arXiv:2312.06902, 2023.

[110] X. Miao, G. Oliaro, Z. Zhang, X. Cheng, H. Jin, T. Chen,
and Z. Jia, “Towards efficient generative large language model
serving: A survey from algorithms to systems,” arXiv preprint
arXiv:2312.15234, 2023.

[111] J. Choquette, “Nvidia hopper gpu: Scaling performance,” in 2022
IEEE Hot Chips 34 Symposium (HCS). IEEE Computer Society,
2022, pp. 1–46.

[112] D. Schneider, “The exascale era is upon us: The frontier super-
computer may be the first to reach 1,000,000,000,000,000,000 op-
erations per second,” IEEE spectrum, vol. 59, no. 1, pp. 34–35,
2022.

[113] S. Dash, I. R. Lyngaas, J. Yin, X. Wang, R. Egele, J. A. Ellis,
M. Maiterth, G. Cong, F. Wang, and P. Balaprakash, “Optimizing
distributed training on frontier for large language models,” in
ISC High Performance 2024 Research Paper Proceedings (39th Inter-
national Conference). Prometeus GmbH, 2024, pp. 1–11.

[114] J. Yin, S. Dash, J. Gounley, F. Wang, and G. Tourassi, “Evalua-
tion of pre-training large language models on leadership-class
supercomputers,” The Journal of Supercomputing, vol. 79, no. 18,
pp. 20 747–20 768, 2023.

[115] T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré, “Flashattention:
Fast and memory-efficient exact attention with io-awareness,”
Advances in Neural Information Processing Systems, vol. 35, pp.
16 344–16 359, 2022.

[116] T. Dao, “FlashAttention-2: Faster Attention with Better Paral-
lelism and Work Partitioning,” arxiv:2307.08691, 2023.

[117] C. Zhang, B. Sun, X. Yu, Z. Xie, W. Zheng, K. A. Iskra, P. Beckman,
and D. Tao, “Benchmarking and in-depth performance study of
large language models on habana gaudi processors,” in Proceed-
ings of the SC’23 Workshops of The International Conference on High
Performance Computing, Network, Storage, and Analysis, 2023, pp.
1759–1766.

[118] N. Dey, G. Gosal, H. Khachane, W. Marshall, R. Pathria, M. Tom,
J. Hestness et al., “Cerebras-gpt: Open compute-optimal language

models trained on the cerebras wafer-scale cluster,” arXiv preprint
arXiv:2304.03208, 2023.

[119] Z. Zhang, C. Chang, H. Lin, Y. Wang, R. Arora, and X. Jin, “Is
network the bottleneck of distributed training?” in Proceedings of
the Workshop on Network Meets AI & ML, 2020, pp. 8–13.

[120] L. Dai, H. Qi, W. Chen, and X. Lu, “High-speed data communica-
tion with advanced networks in large language model training,”
IEEE Micro, 2024.

[121] Y. Zhao, Y. Liu, Y. Peng, Y. Zhu, X. Liu, and X. Jin, “Multi-resource
interleaving for deep learning training,” in Proceedings of the ACM
SIGCOMM 2022 Conference, 2022, pp. 428–440.

[122] K. Kong, “Using pci express® as the primary system interconnect
in multiroot compute, storage, communications and embedded
systems,” White Paper, Integrated Device Technology, p. 12, 2008.

[123] A. Li, S. L. Song, J. Chen, J. Li, X. Liu, N. R. Tallent, and K. J.
Barker, “Evaluating modern gpu interconnect: Pcie, nvlink, nv-
sli, nvswitch and gpudirect,” IEEE Transactions on Parallel and
Distributed Systems, vol. 31, no. 1, pp. 94–110, 2019.

[124] NVIDIA. (2018) Nvidia dgx-2: The world’s most powerful
system for the most complex ai challenges. [Online]. Available:
https://www.nvidia.com/en-us/data-center/dgx-2/

[125] A. C. Elster and T. A. Haugdahl, “Nvidia hopper gpu and grace
cpu highlights,” Computing in Science & Engineering, vol. 24, no. 2,
pp. 95–100, 2022.

[126] “Infiniband product guide,” 2020, accessed: 2024-07-01. [On-
line]. Available: https://network.nvidia.com/files/doc-2020/
br-infiniband-product-guide.pdf

[127] “Roce vs. iwarp competitive analysis,” 2017. [Online].
Available: https://network.nvidia.com/sites/default/files/pdf/
whitepapers/WP RoCE vs iWARP.pdf

[128] Nvidia. (2024) Dgx superpod architecture. [On-
line]. Available: https://docs.nvidia.com/dgx-superpod/
reference-architecture-scalable-infrastructure-h100/latest/
dgx-superpod-architecture.html

[129] J. Dong, Z. Cao, T. Zhang, J. Ye, S. Wang, F. Feng, L. Zhao, X. Liu,
L. Song, L. Peng et al., “Eflops: Algorithm and system co-design
for a high performance distributed training platform,” in 2020
IEEE International Symposium on High Performance Computer Ar-
chitecture (HPCA). IEEE, 2020, pp. 610–622.

[130] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lip-
shteyn, “Rdma over commodity ethernet at scale,” in Proceedings
of the 2016 ACM SIGCOMM Conference, 2016, pp. 202–215.

[131] Kevin Lee, Adi Gangidi and Mathew Old-
ham. Building Meta’s GenAI Infrastructure. [On-
line]. Available: https://engineering.fb.com/2024/03/12/
data-center-engineering/building-metas-genai-infrastructure

[132] J. Qiu, H. Lv, Z. Jin, R. Wang, W. Ning, J. Yu, C. Zhang, P. Chu,
Y. Qu, R. Peng et al., “Wanjuan-cc: A safe and high-quality open-
sourced english webtext dataset,” arXiv preprint arXiv:2402.19282,
2024.

[133] Z. Ye, W. Gao, Q. Hu, P. Sun, X. Wang, Y. Luo, T. Zhang, and
Y. Wen, “Deep learning workload scheduling in gpu datacenters:
A survey,” ACM Computing Surveys, vol. 56, p. 1–38, 2024.

[134] A. Harlap, D. Narayanan, A. Phanishayee, V. Seshadri, N. Deva-
nur, G. Ganger, and P. Gibbons, “Pipedream: Fast and efficient
pipeline parallel dnn training,” arXiv preprint arXiv:1806.03377,
2018.

[135] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. De-
vanur, G. R. Ganger, P. B. Gibbons, and M. Zaharia, “Pipedream:
generalized pipeline parallelism for dnn training,” in Proceedings
of the 27th ACM symposium on operating systems principles, 2019,
pp. 1–15.

[136] S. Li and T. Hoefler, “Chimera: efficiently training large-scale
neural networks with bidirectional pipelines,” in Proceedings of
the International Conference for High Performance Computing, Net-
working, Storage and Analysis, 2021, pp. 1–14.

[137] W. Xiao, S. Ren, Y. Li, Y. Zhang, P. Hou, Z. Li, Y. Feng, W. Lin,
and Y. Jia, “{AntMan}: Dynamic scaling on {GPU} clusters for
deep learning,” in 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), 2020, pp. 533–548.

[138] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra,
Z. Han, P. Patel, X. Peng, H. Zhao, Q. Zhang et al., “Gandiva: In-
trospective cluster scheduling for deep learning,” in 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18), 2018, pp. 595–610.

[139] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao,
and F. Yang, “Analysis of large-scale multi-tenant GPU clusters

https://www.nvidia.com/en-us/data-center/dgx-2/
https://network.nvidia.com/files/doc-2020/br-infiniband-product-guide.pdf
https://network.nvidia.com/files/doc-2020/br-infiniband-product-guide.pdf
https://network.nvidia.com/sites/default/files/pdf/whitepapers/WP_RoCE_vs_iWARP.pdf
https://network.nvidia.com/sites/default/files/pdf/whitepapers/WP_RoCE_vs_iWARP.pdf
https://docs.nvidia.com/dgx-superpod/reference-architecture-scalable-infrastructure-h100/latest/dgx-superpod-architecture.html
https://docs.nvidia.com/dgx-superpod/reference-architecture-scalable-infrastructure-h100/latest/dgx-superpod-architecture.html
https://docs.nvidia.com/dgx-superpod/reference-architecture-scalable-infrastructure-h100/latest/dgx-superpod-architecture.html
https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure
https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure


36

for DNN training workloads,” in 2019 USENIX Annual Technical
Conference, ser. USENIX ATC ’19. USENIX Association, 2019, pp.
947–960.

[140] Q. Hu, P. Sun, S. Yan, Y. Wen, and T. Zhang, “Characterization
and prediction of deep learning workloads in large-scale gpu
datacenters,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’21, 2021.

[141] Q. Weng, W. Xiao, Y. Yu, W. Wang, C. Wang, J. He, Y. Li, L. Zhang,
W. Lin, and Y. Ding, “{MLaaS} in the wild: Workload analysis
and scheduling in {Large-Scale} heterogeneous {GPU} clusters,”
in 19th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 22), 2022, pp. 945–960.

[142] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li,
A. Paszke, J. Smith, B. Vaughan, P. Damania et al., “Pytorch
distributed: Experiences on accelerating data parallel training,”
arXiv preprint arXiv:2006.15704, 2020.

[143] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed
deep learning in tensorflow,” arXiv preprint arXiv:1802.05799,
2018.

[144] Y. Xu, H. Lee, D. Chen, H. Choi, B. Hechtman, and S. Wang, “Au-
tomatic cross-replica sharding of weight update in data-parallel
training,” arXiv preprint arXiv:2004.13336, 2020.

[145] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “Zero: Mem-
ory optimizations toward training trillion parameter models,”
in SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 2020, pp. 1–16.

[146] Y. Zhao, A. Gu, R. Varma, L. Luo, C.-C. Huang, M. Xu, L. Wright,
H. Shojanazeri, M. Ott, S. Shleifer et al., “Pytorch fsdp: Experi-
ences on scaling fully sharded data parallel,” Proceedings of the
VLDB Endowment, vol. 16, no. 12, pp. 3848–3860, 2023.

[147] Z. Zhang, S. Zheng, Y. Wang, J. Chiu, G. Karypis, T. Chilimbi,
M. Li, and X. Jin, “Mics: Near-linear scaling for training gigantic
model on public,” Proceedings of the VLDB Endowment, vol. 16,
no. 1, pp. 37–50, 2022.

[148] Q. Xu and Y. You, “An efficient 2d method for training super-
large deep learning models,” in 2023 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 2023, pp.
222–232.

[149] B. Wang, Q. Xu, Z. Bian, and Y. You, “Tesseract: Parallelize the
tensor parallelism efficiently,” in Proceedings of the 51st Interna-
tional Conference on Parallel Processing, 2022, pp. 1–11.

[150] Z. Bian, Q. Xu, B. Wang, and Y. You, “Maximizing parallelism
in distributed training for huge neural networks,” arXiv preprint
arXiv:2105.14450, 2021.

[151] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu et al., “Gpipe: Efficient training of giant
neural networks using pipeline parallelism,” Advances in neural
information processing systems, vol. 32, 2019.

[152] S. Fan, Y. Rong, C. Meng, Z. Cao, S. Wang, Z. Zheng, C. Wu,
G. Long, J. Yang, L. Xia et al., “Dapple: A pipelined data parallel
approach for training large models,” in Proceedings of the 26th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2021, pp. 431–445.

[153] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Pat-
wary, V. Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer,
B. Catanzaro et al., “Efficient large-scale language model training
on gpu clusters using megatron-lm,” in Proceedings of the Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis, 2021, pp. 1–15.

[154] Z. Li, S. Zhuang, S. Guo, D. Zhuo, H. Zhang, D. Song, and I. Sto-
ica, “Terapipe: Token-level pipeline parallelism for training large-
scale language models,” in International Conference on Machine
Learning. PMLR, 2021, pp. 6543–6552.

[155] Z. Lin, Y. Miao, G. Xu, C. Li, O. Saarikivi, S. Maleki, and F. Yang,
“Tessel: Boosting distributed execution of large dnn models via
flexible schedule search,” in 2024 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 2024, pp.
803–816.

[156] P. Qi, X. Wan, G. Huang, and M. Lin, “Zero bubble pipeline
parallelism,” in The Twelfth International Conference on Learning
Representations, 2023.

[157] Z. Liu, S. Cheng, H. Zhou, and Y. You, “Hanayo: Harnessing
wave-like pipeline parallelism for enhanced large model training
efficiency,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2023, pp.
1–13.

[158] S. Ao, W. Zhao, X. Han, C. Yang, Z. Liu, C. Shi, and M. Sun,
“Seq1f1b: Efficient sequence-level pipeline parallelism for large
language model training,” arXiv preprint arXiv:2406.03488, 2024.

[159] J. Lamy-Poirier, “Breadth-first pipeline parallelism,” Proceedings
of Machine Learning and Systems, vol. 5, 2023.

[160] C. Jiang, Z. Jia, S. Zheng, Y. Wang, and C. Wu, “Dynapipe: Op-
timizing multi-task training through dynamic pipelines,” in Pro-
ceedings of the Nineteenth European Conference on Computer Systems,
2024, pp. 542–559.

[161] J. Huang, Z. Zhang, S. Zheng, F. Qin, and Y. Wang, “Distmm:
Accelerating distributed multimodal model training,” in 21st
USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 24), 2024, pp. 1157–1171.

[162] B. Jeon, M. Wu, S. Cao, S. Kim, S. Park, N. Aggarwal, C. Unger,
D. Arfeen, P. Liao, X. Miao et al., “Graphpipe: Improving per-
formance and scalability of dnn training with graph pipeline
parallelism,” arXiv preprint arXiv:2406.17145, 2024.

[163] T. Kim, H. Kim, G.-I. Yu, and B.-G. Chun, “Bpipe: Memory-
balanced pipeline parallelism for training large language mod-
els,” in International Conference on Machine Learning. PMLR, 2023,
pp. 16 639–16 653.

[164] Q. Zhou, H. Wang, X. Yu, C. Li, Y. Bai, F. Yan, and Y. Xu, “Mpress:
Democratizing billion-scale model training on multi-gpu servers
via memory-saving inter-operator parallelism,” in 2023 IEEE In-
ternational Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 2023, pp. 556–569.

[165] H. Dreuning, H. E. Bal, and R. V. v. Nieuwpoort, “mcap: Memory-
centric partitioning for large-scale pipeline-parallel dnn train-
ing,” in European Conference on Parallel Processing. Springer, 2022,
pp. 155–170.

[166] P. Qi, X. Wan, N. Amar, and M. Lin, “Pipeline parallelism with
controllable memory,” arXiv preprint arXiv:2405.15362, 2024.

[167] S. Athlur, N. Saran, M. Sivathanu, R. Ramjee, and N. Kwatra,
“Varuna: scalable, low-cost training of massive deep learning
models,” in Proceedings of the Seventeenth European Conference on
Computer Systems, 2022, pp. 472–487.

[168] Z. Sun, H. Cao, Y. Wang, G. Feng, S. Chen, H. Wang, and W. Chen,
“Adapipe: Optimizing pipeline parallelism with adaptive recom-
putation and partitioning,” in Proceedings of the 29th ACM Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 3, 2024, pp. 86–100.

[169] S. Li, F. Xue, C. Baranwal, Y. Li, and Y. You, “Sequence par-
allelism: Long sequence training from system perspective,” in
Proceedings of the 61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), 2023, pp. 2391–2404.

[170] V. A. Korthikanti, J. Casper, S. Lym, L. McAfee, M. Andersch,
M. Shoeybi, and B. Catanzaro, “Reducing activation recomputa-
tion in large transformer models,” Proceedings of Machine Learning
and Systems, vol. 5, 2023.

[171] J. Fang and S. Zhao, “Usp: A unified sequence paral-
lelism approach for long context generative ai,” arXiv preprint
arXiv:2405.07719, 2024.

[172] S. A. Jacobs, M. Tanaka, C. Zhang, M. Zhang, R. Y. Aminadabi,
S. L. Song, S. Rajbhandari, and Y. He, “System optimizations for
enabling training of extreme long sequence transformer models,”
in Proceedings of the 43rd ACM Symposium on Principles of Dis-
tributed Computing, 2024, pp. 121–130.

[173] NVIDIA. (2023) Megatron context parallelism. [On-
line]. Available: https://docs.nvidia.com/megatron-core/
developer-guide/latest/api-guide/context parallel.html

[174] D. Gu, P. Sun, Q. Hu, T. Huang, X. Chen, Y. Xiong, G. Wang,
Q. Chen, S. Zhao, J. Fang et al., “Loongtrain: Efficient training of
long-sequence llms with head-context parallelism,” arXiv preprint
arXiv:2406.18485, 2024.

[175] H. Liu, M. Zaharia, and P. Abbeel, “Ring attention with blockwise
transformers for near-infinite context,” International Conference on
Learning Representations(ICLR), 2024.

[176] D. Li, R. Shao, A. Xie, E. P. Xing, J. E. Gonzalez, I. Sto-
ica, X. Ma, and H. Zhang, “DISTFLASHATTN: Distributed
Memory-efficient Attention for Long-context LLMs Training,”
arxiv:2310.03294, 2023.

[177] X. Zhao, S. Cheng, Z. Zheng, Z. Yang, Z. Liu, and Y. You, “Dsp:
Dynamic sequence parallelism for multi-dimensional transform-
ers,” arXiv preprint arXiv:2403.10266, 2024.

[178] W. Brandon, A. Nrusimha, K. Qian, Z. Ankner, T. Jin, Z. Song,
and J. Ragan-Kelley, “Striped attention: Faster ring attention for
causal transformers,” arXiv preprint arXiv:2311.09431, 2023.

https://docs.nvidia.com/megatron-core/developer-guide/latest/api-guide/context_parallel.html
https://docs.nvidia.com/megatron-core/developer-guide/latest/api-guide/context_parallel.html


37

[179] S. Ao, W. Zhao, X. Han, C. Yang, Z. Liu, C. Shi, M. Sun,
S. Wang, and T. Su, “Burstattention: An efficient distributed at-
tention framework for extremely long sequences,” arXiv preprint
arXiv:2403.09347, 2024.

[180] Z. Liu, S. Wang, S. Cheng, Z. Zhao, Y. Bai, X. Zhao, J. Dem-
mel, and Y. You, “Wallfacer: Guiding transformer model training
out of the long-context dark forest with n-body problem,” arXiv
preprint arXiv:2407.00611, 2024.

[181] W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling
to trillion parameter models with simple and efficient sparsity,”
Journal of Machine Learning Research, vol. 23, no. 120, pp. 1–39,
2022.

[182] C. Hwang, W. Cui, Y. Xiong, Z. Yang, Z. Liu, H. Hu, Z. Wang,
R. Salas, J. Jose, P. Ram et al., “Tutel: Adaptive mixture-of-experts
at scale,” Proceedings of Machine Learning and Systems, vol. 5, 2023.

[183] S. Rajbhandari, C. Li, Z. Yao, M. Zhang, R. Y. Aminabadi,
A. A. Awan, J. Rasley, and Y. He, “Deepspeed-moe: Advanc-
ing mixture-of-experts inference and training to power next-
generation ai scale,” in International conference on machine learning.
PMLR, 2022, pp. 18 332–18 346.

[184] S. Tan, Y. Shen, R. Panda, and A. Courville, “Scattered mixture-of-
experts implementation,” arXiv preprint arXiv:2403.08245, 2024.

[185] T. Gale, D. Narayanan, C. Young, and M. Zaharia, “Megablocks:
Efficient sparse training with mixture-of-experts,” Proceedings of
Machine Learning and Systems, vol. 5, 2023.

[186] S. Shi, X. Pan, X. Chu, and B. Li, “Pipemoe: Accelerating mixture-
of-experts through adaptive pipelining,” in IEEE INFOCOM
2023-IEEE Conference on Computer Communications. IEEE, 2023,
pp. 1–10.

[187] S. Shi, X. Pan, Q. Wang, C. Liu, X. Ren, Z. Hu, Y. Yang, B. Li, and
X. Chu, “Schemoe: An extensible mixture-of-experts distributed
training system with tasks scheduling,” in Proceedings of the Nine-
teenth European Conference on Computer Systems, 2024, pp. 236–249.

[188] J. Li, Y. Jiang, Y. Zhu, C. Wang, and H. Xu, “Accelerating
distributed {MoE} training and inference with lina,” in 2023
USENIX Annual Technical Conference (USENIX ATC 23), 2023, pp.
945–959.

[189] J. Liu, J. H. Wang, and Y. Jiang, “Janus: A unified distributed
training framework for sparse mixture-of-experts models,” in
Proceedings of the ACM SIGCOMM 2023 Conference, 2023, pp. 486–
498.

[190] C. Chen, M. Li, Z. Wu, D. Yu, and C. Yang, “Ta-moe: Topology-
aware large scale mixture-of-expert training,” Advances in Neural
Information Processing Systems, vol. 35, pp. 22 173–22 186, 2022.

[191] J. He, J. Qiu, A. Zeng, Z. Yang, J. Zhai, and J. Tang, “Fast-
moe: A fast mixture-of-expert training system,” arXiv preprint
arXiv:2103.13262, 2021.

[192] J. He, J. Zhai, T. Antunes, H. Wang, F. Luo, S. Shi, and Q. Li,
“Fastermoe: modeling and optimizing training of large-scale dy-
namic pre-trained models,” in Proceedings of the 27th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
2022, pp. 120–134.

[193] M. Zhai, J. He, Z. Ma, Z. Zong, R. Zhang, and J. Zhai, “Smart-
moe: Efficiently training {Sparsely-Activated} models through
combining offline and online parallelization,” in 2023 USENIX
Annual Technical Conference (USENIX ATC 23), 2023, pp. 961–975.

[194] X. Nie, X. Miao, Z. Wang, Z. Yang, J. Xue, L. Ma, G. Cao, and
B. Cui, “Flexmoe: Scaling large-scale sparse pre-trained model
training via dynamic device placement,” Proceedings of the ACM
on Management of Data, vol. 1, no. 1, pp. 1–19, 2023.

[195] W. Wang, Z. Lai, S. Li, W. Liu, K. Ge, Y. Liu, A. Shen, and D. Li,
“Prophet: Fine-grained load balancing for parallel training of
large-scale moe models,” in 2023 IEEE International Conference on
Cluster Computing (CLUSTER). IEEE, 2023, pp. 82–94.

[196] N. Shazeer, Y. Cheng, N. Parmar, D. Tran, A. Vaswani, P. Koanan-
takool, P. Hawkins, H. Lee, M. Hong, C. Young et al., “Mesh-
tensorflow: Deep learning for supercomputers,” Advances in neu-
ral information processing systems, vol. 31, 2018.

[197] Y. Xu, H. Lee, D. Chen, B. Hechtman, Y. Huang, R. Joshi,
M. Krikun, D. Lepikhin, A. Ly, M. Maggioni et al., “Gspmd:
general and scalable parallelization for ml computation graphs,”
arXiv preprint arXiv:2105.04663, 2021.

[198] Z. Jia, S. Lin, C. R. Qi, and A. Aiken, “Exploring hidden dimen-
sions in parallelizing convolutional neural networks.” in ICML,
2018, pp. 2279–2288.

[199] Z. Jia, M. Zaharia, and A. Aiken, “Beyond data and model paral-

lelism for deep neural networks.” Proceedings of Machine Learning
and Systems, vol. 1, pp. 1–13, 2019.

[200] M. Wang, C.-c. Huang, and J. Li, “Supporting very large models
using automatic dataflow graph partitioning,” in Proceedings of
the Fourteenth EuroSys Conference 2019, 2019, pp. 1–17.

[201] L. Song, J. Mao, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “Hypar:
Towards hybrid parallelism for deep learning accelerator array,”
in 2019 IEEE international symposium on high performance computer
architecture (HPCA). IEEE, 2019, pp. 56–68.

[202] M. Schaarschmidt, D. Grewe, D. Vytiniotis, A. Paszke, G. S.
Schmid, T. Norman, J. Molloy, J. Godwin, N. A. Rink, V. Nair
et al., “Automap: Towards ergonomic automated parallelism for
ml models,” arXiv preprint arXiv:2112.02958, 2021.

[203] H. Chen, C. H. Yu, S. Zheng, Z. Zhang, Z. Zhang, and Y. Wang,
“Slapo: A schedule language for progressive optimization of
large deep learning model training,” in Proceedings of the 29th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 2, 2024, pp. 1095–
1111.

[204] Z. Cai, X. Yan, K. Ma, Y. Wu, Y. Huang, J. Cheng, T. Su, and
F. Yu, “Tensoropt: Exploring the tradeoffs in distributed dnn
training with auto-parallelism,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 8, pp. 1967–1981, 2021.

[205] W. Liu, Z. Lai, S. Li, Y. Duan, K. Ge, and D. Li, “Autopipe:
A fast pipeline parallelism approach with balanced partitioning
and micro-batch slicing,” in 2022 IEEE International Conference on
Cluster Computing (CLUSTER). IEEE, 2022, pp. 301–312.

[206] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen, Y. Zhou,
N. Kumar, M. Norouzi, S. Bengio, and J. Dean, “Device place-
ment optimization with reinforcement learning,” in International
conference on machine learning. PMLR, 2017, pp. 2430–2439.

[207] Y. Gao, L. Chen, and B. Li, “Spotlight: Optimizing device place-
ment for training deep neural networks,” in International Confer-
ence on Machine Learning. PMLR, 2018, pp. 1676–1684.

[208] J. M. Tarnawski, A. Phanishayee, N. Devanur, D. Mahajan, and
F. Nina Paravecino, “Efficient algorithms for device placement of
dnn graph operators,” Advances in Neural Information Processing
Systems, vol. 33, pp. 15 451–15 463, 2020.

[209] J. M. Tarnawski, D. Narayanan, and A. Phanishayee, “Piper:
Multidimensional planner for dnn parallelization,” Advances in
Neural Information Processing Systems, vol. 34, pp. 24 829–24 840,
2021.

[210] C. Unger, Z. Jia, W. Wu, S. Lin, M. Baines, C. E. Q. Narvaez, V. Ra-
makrishnaiah, N. Prajapati, P. McCormick, J. Mohd-Yusof et al.,
“Unity: Accelerating {DNN} training through joint optimization
of algebraic transformations and parallelization,” in 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
22), 2022, pp. 267–284.

[211] G. Liu, Y. Miao, Z. Lin, X. Shi, S. Maleki, F. Yang, Y. Bao, and
S. Wang, “Aceso: Efficient parallel dnn training through iterative
bottleneck alleviation,” in Proceedings of the Nineteenth European
Conference on Computer Systems, 2024, pp. 163–181.

[212] S. Alabed, B. Chrzaszcz, J. Franco, D. Grewe, D. Maclaurin,
J. Molloy, T. Natan, T. Norman, X. Pan, A. Paszke et al., “Partir:
Composing spmd partitioning strategies for machine learning,”
arXiv preprint arXiv:2401.11202, 2024.

[213] Z. Lin, Y. Miao, Q. Zhang, F. Yang, Y. Zhu, C. Li, S. Maleki, X. Cao,
N. Shang, Y. Yang et al., “{nnScaler}:{Constraint-Guided} par-
allelization plan generation for deep learning training,” in 18th
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 24), 2024, pp. 347–363.

[214] J. Yuan, X. Li, C. Cheng, J. Liu, R. Guo, S. Cai, C. Yao, F. Yang,
X. Yi, C. Wu et al., “Oneflow: Redesign the distributed deep learn-
ing framework from scratch,” arXiv preprint arXiv:2110.15032,
2021.

[215] J. Chen, S. Li, R. Guo, J. Yuan, and T. Hoefler, “Autoddl: Au-
tomatic distributed deep learning with near-optimal bandwidth
cost,” IEEE Transactions on Parallel and Distributed Systems, 2024.

[216] DeepSpeed. (2021) Deepspeed autotuning. [Online]. Available:
https://www.deepspeed.ai/tutorials/autotuning

[217] X. Miao, Y. Wang, Y. Jiang, C. Shi, X. Nie, H. Zhang, and B. Cui,
“Galvatron: Efficient transformer training over multiple gpus us-
ing automatic parallelism,” Proceedings of the VLDB Endowment,
vol. 16, no. 3, pp. 470–479, 2022.

[218] Z. Lai, S. Li, X. Tang, K. Ge, W. Liu, Y. Duan, L. Qiao, and D. Li,
“Merak: An efficient distributed dnn training framework with
automated 3d parallelism for giant foundation models,” IEEE

https://www.deepspeed.ai/tutorials/autotuning


38

Transactions on Parallel and Distributed Systems, vol. 34, no. 5, pp.
1466–1478, 2023.

[219] Y. Liu, S. Li, J. Fang, Y. Shao, B. Yao, and Y. You, “Colossal-Auto:
Unified Automation of Parallelization and Activation Checkpoint
for Large-scale Models,” arXiv:2302.02599, 2023.

[220] Y. Wang, Y. Jiang, X. Miao, F. Fu, S. Zhu, X. Nie, Y. Tu, and B. Cui,
“Improving automatic parallel training via balanced memory
workload optimization,” IEEE Transactions on Knowledge and Data
Engineering, 2024.

[221] J. H. Park, G. Yun, M. Y. Chang, N. T. Nguyen, S. Lee, J. Choi,
S. H. Noh, and Y.-r. Choi, “Hetpipe: Enabling large dnn train-
ing on (whimpy) heterogeneous gpu clusters through integration
of pipelined model parallelism and data parallelism,” in 2020
USENIX Annual Technical Conference (USENIX ATC 20), 2020, pp.
307–321.

[222] L. Song, F. Chen, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “Accpar:
Tensor partitioning for heterogeneous deep learning accelera-
tors,” in 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2020, pp. 342–355.

[223] X. Jia, L. Jiang, A. Wang, W. Xiao, Z. Shi, J. Zhang, X. Li, L. Chen,
Y. Li, Z. Zheng et al., “Whale: Efficient giant model training over
heterogeneous {GPUs},” in 2022 USENIX Annual Technical Con-
ference (USENIX ATC 22), 2022, pp. 673–688.

[224] D. Li, H. Wang, E. Xing, and H. Zhang, “Amp: Automatically
finding model parallel strategies with heterogeneity awareness,”
Advances in Neural Information Processing Systems, vol. 35, pp.
6630–6639, 2022.

[225] P. Barham, A. Chowdhery, J. Dean, S. Ghemawat, S. Hand,
D. Hurt, M. Isard, H. Lim, R. Pang, S. Roy et al., “Pathways:
Asynchronous distributed dataflow for ml,” Proceedings of Ma-
chine Learning and Systems, vol. 4, pp. 430–449, 2022.

[226] Y. Duan, Z. Lai, S. Li, W. Liu, K. Ge, P. Liang, and D. Li, “Hph:
Hybrid parallelism on heterogeneous clusters for accelerating
large-scale dnns training,” in 2022 IEEE International Conference
on Cluster Computing (CLUSTER). IEEE, 2022, pp. 313–323.

[227] X. Miao, Y. Shi, Z. Yang, B. Cui, and Z. Jia, “Sdpipe: A
semi-decentralized framework for heterogeneity-aware pipeline-
parallel training,” Proceedings of the VLDB Endowment, vol. 16,
no. 9, pp. 2354–2363, 2023.

[228] S. Zhang, L. Diao, C. Wu, Z. Cao, S. Wang, and W. Lin, “Hap:
Spmd dnn training on heterogeneous gpu clusters with auto-
mated program synthesis,” in Proceedings of the Nineteenth Euro-
pean Conference on Computer Systems, 2024, pp. 524–541.

[229] J. Zhang, G. Niu, Q. Dai, H. Li, Z. Wu, F. Dong, and Z. Wu,
“Pipepar: Enabling fast dnn pipeline parallel training in hetero-
geneous gpu clusters,” Neurocomputing, vol. 555, p. 126661, 2023.

[230] B. Yuan, Y. He, J. Davis, T. Zhang, T. Dao, B. Chen, P. S. Liang,
C. Re, and C. Zhang, “Decentralized training of foundation mod-
els in heterogeneous environments,” Advances in Neural Informa-
tion Processing Systems, vol. 35, pp. 25 464–25 477, 2022.

[231] M. Ryabinin, T. Dettmers, M. Diskin, and A. Borzunov,
“Swarm parallelism: Training large models can be surprisingly
communication-efficient,” in International Conference on Machine
Learning. PMLR, 2023, pp. 29 416–29 440.

[232] Z. Tang, Y. Wang, X. He, L. Zhang, X. Pan, Q. Wang, R. Zeng,
K. Zhao, S. Shi, B. He et al., “Fusionai: Decentralized training
and deploying llms with massive consumer-level gpus,” arXiv
preprint arXiv:2309.01172, 2023.

[233] Z. Yao, R. Y. Aminabadi, O. Ruwase, S. Rajbhandari, X. Wu, A. A.
Awan, J. Rasley, M. Zhang, C. Li, C. Holmes et al., “Deepspeed-
chat: Easy, fast and affordable rlhf training of chatgpt-like models
at all scales,” arXiv preprint arXiv:2308.01320, 2023.

[234] “Trl - transformer reinforcement learning.” [Online]. Available:
https://github.com/huggingface/trl

[235] J. Hu, X. Wu, W. Wang, D. Zhang, Y. Cao et al., “Openrlhf:
An easy-to-use, scalable and high-performance rlhf framework,”
arXiv preprint arXiv:2405.11143, 2024.

[236] Y. Xiao, W. Wu, Z. Zhou, F. Mao, S. Zhao, L. Ju, L. Liang,
X. Zhang, and J. Zhou, “An Adaptive Placement and Parallelism
Framework for Accelerating RLHF Training,” arxiv:2312.11819,
2023.

[237] Z. Mei, W. Fu, K. Li, G. Wang, H. Zhang, and Y. Wu, “Realhf:
Optimized rlhf training for large language models through pa-
rameter reallocation,” arXiv preprint arXiv:2406.14088, 2024.

[238] K. Lei, Y. Jin, M. Zhai, K. Huang, H. Ye, and J. Zhai, “{PUZZLE}:
Efficiently aligning large language models through {Light-

Weight} context switch,” in 2024 USENIX Annual Technical Con-
ference (USENIX ATC 24), 2024, pp. 127–140.

[239] L. Clarke, I. Glendinning, and R. Hempel, “The mpi message
passing interface standard,” in Programming Environments for
Massively Parallel Distributed Systems: Working Conference of the
IFIP WG 10.3, April 25–29, 1994. Springer, 1994, pp. 213–218.

[240] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An im-
perative style, high-performance deep learning library,” Advances
in neural information processing systems, vol. 32, 2019.

[241] R. A. Van De Geijn and J. Watts, “Summa: Scalable universal
matrix multiplication algorithm,” Concurrency: Practice and Expe-
rience, vol. 9, no. 4, pp. 255–274, 1997.

[242] L. E. Cannon, A cellular computer to implement the Kalman filter
algorithm. Montana State University, 1969.

[243] E. Solomonik and J. Demmel, “Communication-optimal parallel
2.5 d matrix multiplication and lu factorization algorithms,” in
European Conference on Parallel Processing. Springer, 2011, pp.
90–109.

[244] R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and
P. Palkar, “A three-dimensional approach to parallel matrix mul-
tiplication,” IBM Journal of Research and Development, vol. 39, no. 5,
pp. 575–582, 1995.

[245] F. Strati, P. Elvinger, T. Kerimoglu, and A. Klimovic, “Ml training
with cloud gpu shortages: Is cross-region the answer?” in Pro-
ceedings of the 4th Workshop on Machine Learning and Systems, 2024,
pp. 107–116.

[246] W. Peebles and S. Xie, “Scalable diffusion models with trans-
formers,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2023, pp. 4195–4205.

[247] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propa-
gating gradients through stochastic neurons for conditional com-
putation,” arXiv preprint arXiv:1308.3432, 2013.

[248] A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary,
C. Bamford, D. S. Chaplot, D. d. l. Casas, E. B. Hanna, F. Bressand
et al., “Mixtral of experts,” arXiv preprint arXiv:2401.04088, 2024.

[249] S. Singh, O. Ruwase, A. A. Awan, S. Rajbhandari, Y. He, and
A. Bhatele, “A hybrid tensor-expert-data parallelism approach to
optimize mixture-of-experts training,” in Proceedings of the 37th
International Conference on Supercomputing, 2023, pp. 203–214.

[250] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary,
D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas,
S. Wanderman-Milne et al., “Jax: composable transformations of
python+ numpy programs,” 2018.

[251] G. X. team. (2017) Xla: Optimizing compiler for machine
learning. [Online]. Available: https://github.com/openxla/xla

[252] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen,
M. Cowan, L. Wang, Y. Hu, L. Ceze et al., “{TVM}: An automated
{End-to-End} optimizing compiler for deep learning,” in 13th
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 18), 2018, pp. 578–594.

[253] S. Li, H. Liu, Z. Bian, J. Fang, H. Huang, Y. Liu, B. Wang, and
Y. You, “Colossal-ai: A unified deep learning system for large-
scale parallel training,” in Proceedings of the 52nd International
Conference on Parallel Processing, 2023, pp. 766–775.

[254] J. Wang, Y. Lu, B. Yuan, B. Chen, P. Liang, C. De Sa, C. Re,
and C. Zhang, “Cocktailsgd: Fine-tuning foundation models over
500mbps networks,” in International Conference on Machine Learn-
ing. PMLR, 2023, pp. 36 058–36 076.

[255] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright,
P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman,
J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder,
P. Christiano, J. Leike, and R. Lowe, “Training language models
to follow instructions with human feedback,” arXiv:2203.02155,
2022.

[256] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017.

[257] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
and W. Chen, “Lora: Low-rank adaptation of large language
models,” arXiv preprint arXiv:2106.09685, 2021.

[258] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer,
“Qlora: Efficient finetuning of quantized llms,” Advances in Neu-
ral Information Processing Systems, vol. 36, 2024.

[259] “unsloth - finetune llama 3, mistral, phi-3 & gemma 2-5x faster
with 80

[260] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan et al., “Ray: A distributed

https://github.com/huggingface/trl
https://github.com/openxla/xla


39

framework for emerging {AI} applications,” in 13th USENIX
symposium on operating systems design and implementation (OSDI
18), 2018, pp. 561–577.

[261] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonza-
lez, H. Zhang, and I. Stoica, “Efficient memory management for
large language model serving with pagedattention,” in Proceed-
ings of the 29th Symposium on Operating Systems Principles, 2023,
pp. 611–626.

[262] J. Shah, G. Bikshandi, Y. Zhang, V. Thakkar, P. Ramani, and
T. Dao, “Flashattention-3: Fast and accurate attention with asyn-
chrony and low-precision,” arXiv preprint arXiv:2407.08608, 2024.

[263] H. Liu and P. Abbeel, “Blockwise parallel transformers for large
context models,” Advances in Neural Information Processing Sys-
tems, vol. 36, 2024.

[264] R. Wu, X. Zhu, J. Chen, S. Liu, T. Zheng, X. Liu, and H. An,
“Swattention: designing fast and memory-efficient attention for
a new sunway supercomputer,” The Journal of Supercomputing, pp.
1–24, 2024.

[265] G. Bikshandi and J. Shah, “A case study in cuda kernel fusion:
Implementing flashattention-2 on nvidia hopper architecture us-
ing the cutlass library,” arXiv preprint arXiv:2312.11918, 2023.

[266] Y. Zhai, C. Jiang, L. Wang, X. Jia, S. Zhang, Z. Chen, X. Liu,
and Y. Zhu, “Bytetransformer: A high-performance transformer
boosted for variable-length inputs,” in 2023 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE,
2023, pp. 344–355.

[267] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe, “Halide: a language and compiler for optimiz-
ing parallelism, locality, and recomputation in image processing
pipelines,” Acm Sigplan Notices, vol. 48, no. 6, pp. 519–530, 2013.

[268] H. Zhu, R. Wu, Y. Diao, S. Ke, H. Li, C. Zhang, J. Xue, L. Ma,
Y. Xia, W. Cui et al., “{ROLLER}: Fast and efficient tensor compi-
lation for deep learning,” in 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), 2022, pp. 233–248.

[269] P. Tillet, H.-T. Kung, and D. Cox, “Triton: an intermediate lan-
guage and compiler for tiled neural network computations,” in
Proceedings of the 3rd ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages, 2019, pp. 10–19.

[270] G. Huang, Y. Bai, L. Liu, Y. Wang, B. Yu, Y. Ding, and Y. Xie, “Al-
cop: Automatic load-compute pipelining in deep learning com-
piler for ai-gpus,” Proceedings of Machine Learning and Systems,
vol. 5, 2023.

[271] S. Zheng, S. Chen, P. Song, R. Chen, X. Li, S. Yan, D. Lin, J. Leng,
and Y. Liang, “Chimera: An analytical optimizing framework for
effective compute-intensive operators fusion,” in 2023 IEEE In-
ternational Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 2023, pp. 1113–1126.

[272] Y. Shi, Z. Yang, J. Xue, L. Ma, Y. Xia, Z. Miao, Y. Guo, F. Yang,
and L. Zhou, “Welder: Scheduling deep learning memory access
via tile-graph,” in 17th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 23), 2023, pp. 701–718.

[273] J. Ansel, E. Yang, H. He, N. Gimelshein, A. Jain, M. Voznesensky,
B. Bao, P. Bell, D. Berard, E. Burovski et al., “Pytorch 2: Faster
machine learning through dynamic python bytecode transfor-
mation and graph compilation,” in Proceedings of the 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, 2024, pp. 929–947.

[274] M. Ibrahim, S. Aga, A. Li, S. Pati, and M. Islam, “Jit-q: Just-
in-time quantization with processing-in-memory for efficient ml
training,” Proceedings of Machine Learning and Systems, vol. 6, pp.
46–59, 2024.

[275] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Gar-
cia, B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh et al.,
“Mixed precision training,” arXiv preprint arXiv:1710.03740, 2017.

[276] X. He, J. Sun, H. Chen, and D. Li, “Campo:{Cost-Aware} perfor-
mance optimization for {Mixed-Precision} neural network train-
ing,” in 2022 USENIX Annual Technical Conference (USENIX ATC
22), 2022, pp. 505–518.

[277] D. Kalamkar, D. Mudigere, N. Mellempudi, D. Das, K. Banerjee,
S. Avancha, D. T. Vooturi, N. Jammalamadaka, J. Huang, H. Yuen
et al., “A study of bfloat16 for deep learning training,” arXiv
preprint arXiv:1905.12322, 2019.

[278] M. Li, R. B. Basat, S. Vargaftik, C. Lao, K. Xu, M. Mitzenmacher,
and M. Yu, “{THC}: Accelerating distributed deep learning using
tensor homomorphic compression,” in 21st USENIX Symposium
on Networked Systems Design and Implementation (NSDI 24), 2024,
pp. 1191–1211.

[279] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrishnan,
“Training deep neural networks with 8-bit floating point num-
bers,” Advances in neural information processing systems, vol. 31,
2018.

[280] X. Sun, J. Choi, C.-Y. Chen, N. Wang, S. Venkataramani, V. V.
Srinivasan, X. Cui, W. Zhang, and K. Gopalakrishnan, “Hybrid
8-bit floating point (hfp8) training and inference for deep neu-
ral networks,” Advances in neural information processing systems,
vol. 32, 2019.

[281] H. Peng, K. Wu, Y. Wei, G. Zhao, Y. Yang, Z. Liu, Y. Xiong,
Z. Yang, B. Ni, J. Hu et al., “Fp8-lm: Training fp8 large language
models,” arXiv preprint arXiv:2310.18313, 2023.

[282] B. D. Rouhani, R. Zhao, A. More, M. Hall, A. Khodamoradi,
S. Deng, D. Choudhary, M. Cornea, E. Dellinger, K. Denolf et al.,
“Microscaling data formats for deep learning,” arXiv preprint
arXiv:2310.10537, 2023.

[283] H. Xi, Y. Chen, K. Zhao, K. Zheng, J. Chen, and J. Zhu, “Jet-
fire: Efficient and accurate transformer pretraining with int8 data
flow and per-block quantization,” arXiv preprint arXiv:2403.12422,
2024.

[284] H. Xi, C. Li, J. Chen, and J. Zhu, “Training transformers with
4-bit integers,” Advances in Neural Information Processing Systems,
vol. 36, pp. 49 146–49 168, 2023.

[285] H. Wang, S. Ma, L. Dong, S. Huang, H. Wang, L. Ma, F. Yang,
R. Wang, Y. Wu, and F. Wei, “Bitnet: Scaling 1-bit transformers
for large language models,” arXiv preprint arXiv:2310.11453, 2023.

[286] S. Ma, H. Wang, L. Ma, L. Wang, W. Wang, S. Huang, L. Dong,
R. Wang, J. Xue, and F. Wei, “The era of 1-bit llms: All large
language models are in 1.58 bits,” arXiv preprint arXiv:2402.17764,
2024.

[287] M. N. Rabe and C. Staats, “Self-attention does not need o(n2)
memory,” arXiv preprint arXiv:2112.05682, 2021.

[288] Z. Jia, O. Padon, J. Thomas, T. Warszawski, M. Zaharia, and
A. Aiken, “Taso: optimizing deep learning computation with au-
tomatic generation of graph substitutions,” in Proceedings of the
27th ACM Symposium on Operating Systems Principles, 2019, pp.
47–62.

[289] L. Zheng, C. Jia, M. Sun, Z. Wu, C. H. Yu, A. Haj-Ali,
Y. Wang, J. Yang, D. Zhuo, K. Sen et al., “Ansor: Generating
{High-Performance} tensor programs for deep learning,” in 14th
USENIX symposium on operating systems design and implementation
(OSDI 20), 2020, pp. 863–879.

[290] W. Niu, J. Guan, Y. Wang, G. Agrawal, and B. Ren, “Dnnfusion:
accelerating deep neural networks execution with advanced op-
erator fusion,” in Proceedings of the 42nd ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implementa-
tion, 2021, pp. 883–898.

[291] Z. Zheng, X. Yang, P. Zhao, G. Long, K. Zhu, F. Zhu, W. Zhao,
X. Liu, J. Yang, J. Zhai et al., “Astitch: enabling a new multi-
dimensional optimization space for memory-intensive ml train-
ing and inference on modern simt architectures,” in Proceedings of
the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2022, pp. 359–373.

[292] B. Workshop, T. L. Scao, A. Fan, C. Akiki, E. Pavlick, S. Ilić,
D. Hesslow, R. Castagné, A. S. Luccioni, F. Yvon et al., “Bloom: A
176b-parameter open-access multilingual language model,” arXiv
preprint arXiv:2211.05100, 2022.

[293] M. Cherti, R. Beaumont, R. Wightman, M. Wortsman, G. Ilharco,
C. Gordon, C. Schuhmann, L. Schmidt, and J. Jitsev, “Repro-
ducible scaling laws for contrastive language-image learning,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 2818–2829.

[294] K. Yang, Y.-F. Chen, G. Roumpos, C. Colby, and J. Anderson,
“High performance monte carlo simulation of ising model on
tpu clusters,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2019, pp.
1–15.

[295] K. Fischer and E. Saba, “Automatic full compilation of ju-
lia programs and ml models to cloud tpus,” arXiv preprint
arXiv:1810.09868, 2018.

[296] J. Choquette, “Nvidia hopper h100 gpu: Scaling performance,”
IEEE Micro, 2023.

[297] M. Kirisame, S. Lyubomirsky, A. Haan, J. Brennan, M. He,
J. Roesch, T. Chen, and Z. Tatlock, “Dynamic tensor remateri-
alization,” arXiv preprint arXiv:2006.09616, 2020.

[298] Z. Hu, J. Xiao, Z. Deng, M. Li, K. Zhang, X. Zhang, K. Meng,
N. Sun, and G. Tan, “Megtaichi: Dynamic tensor-based memory



40

management optimization for dnn training,” in Proceedings of the
36th ACM International Conference on Supercomputing, 2022, pp.
1–13.

[299] J. Zhang, S. Ma, P. Liu, and J. Yuan, “Coop: Memory is not a
commodity,” Advances in Neural Information Processing Systems,
vol. 36, 2024.

[300] P. Jain, A. Jain, A. Nrusimha, A. Gholami, P. Abbeel, J. Gonzalez,
K. Keutzer, and I. Stoica, “Checkmate: Breaking the memory wall
with optimal tensor rematerialization,” Proceedings of Machine
Learning and Systems, vol. 2, pp. 497–511, 2020.

[301] T. Yuan, Y. Liu, X. Ye, S. Zhang, J. Tan, B. Chen, C. Song, and
D. Zhang, “Accelerating the Training of Large Language Models
using Efficient Activation Rematerialization and Optimal Hybrid
Parallelism,” 2024 USENIX Annual Technical Conference (USENIX
ATC 24), 2024.

[302] G. Wang, H. Qin, S. A. Jacobs, C. Holmes, S. Rajbhandari,
O. Ruwase, F. Yan, L. Yang, and Y. He, “ZeRO++: Extremely
Efficient Collective Communication for Giant Model Training,”
arXiv:2306.10209, 2023.

[303] C. Wu, H. Zhang, L. Ju, J. Huang, Y. Xiao, Z. Huan, S. Li, F. Meng,
L. Liang, X. Zhang, and J. Zhou, “Rethinking memory and com-
munication cost for efficient large language model training,”
arXiv preprint arXiv:2310.06003, 2023.

[304] C. Luo, T. Zhong, and G. Fox, “Rtp: Rethinking tensor parallelism
with memory deduplication,” arXiv preprint arXiv:2311.01635,
2023.

[305] Q. Chen, Q. Hu, G. Wang, Y. Xiong, T. Huang, X. Chen, Y. Gao,
H. Yan, Y. Wen, T. Zhang, and P. Sun, “Amsp: Reducing commu-
nication overhead of zero for efficient llm training,” 2024.

[306] H. Shu, A. Wang, Z. Shi, H. Zhao, Y. Li, and L. Lu, “Roam:
memory-efficient large dnn training via optimized operator or-
dering and memory layout,” arXiv preprint arXiv:2310.19295,
2023.

[307] A. Imanishi and Z. Xu, “A Heuristic for Periodic Memory Allo-
cation with Little Fragmentation to Train Neural Networks,” in
Proceedings of the 2024 ACM SIGPLAN International Symposium on
Memory Management. ACM, 2024, pp. 82–94.

[308] C. Guo, R. Zhang, J. Xu, J. Leng, Z. Liu, Z. Huang, M. Guo,
H. Wu, S. Zhao, J. Zhao et al., “Gmlake: Efficient and transpar-
ent gpu memory defragmentation for large-scale dnn training
with virtual memory stitching,” in Proceedings of the 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, 2024, pp. 450–466.

[309] PyTorch. (2023) Pytorch expandable segments. [Online].
Available: https://github.com/pytorch/pytorch/pull/96995

[310] B. Pudipeddi, M. Mesmakhosroshahi, J. Xi, and S. Bharadwaj,
“Training large neural networks with constant memory using a
new execution algorithm,” arXiv preprint arXiv:2002.05645, 2020.

[311] J. Ren, S. Rajbhandari, R. Y. Aminabadi, O. Ruwase, S. Yang,
M. Zhang, D. Li, and Y. He, “Zero-offload: Democratizing billion-
scale model training,” in 2021 USENIX Annual Technical Confer-
ence (USENIX ATC 21), 2021, pp. 551–564.

[312] H. Huang, J. Fang, H. Liu, S. Li, and Y. You, “Elixir: Train a
large language model on a small gpu cluster,” arXiv preprint
arXiv:2212.05339, 2022.

[313] X. Nie, X. Miao, Z. Yang, and B. Cui, “Tsplit: Fine-grained gpu
memory management for efficient dnn training via tensor split-
ting,” in 2022 IEEE 38th International Conference on Data Engineer-
ing (ICDE). IEEE, 2022, pp. 2615–2628.

[314] J. Fang, Z. Zhu, S. Li, H. Su, Y. Yu, J. Zhou, and Y. You, “Parallel
training of pre-trained models via chunk-based dynamic mem-
ory management,” IEEE Transactions on Parallel and Distributed
Systems, vol. 34, no. 1, pp. 304–315, 2022.

[315] Y. Feng, M. Xie, Z. Tian, S. Wang, Y. Lu, and J. Shu, “Mobius: Fine
tuning large-scale models on commodity gpu servers,” in Pro-
ceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
2, 2023, pp. 489–501.

[316] Y. Li, A. Phanishayee, D. Murray, J. Tarnawski, and N. S. Kim,
“Harmony: overcoming the hurdles of gpu memory capacity to
train massive dnn models on commodity servers,” Proceedings of
the VLDB Endowment, vol. 15, no. 11, pp. 2747–2760, 2022.

[317] S.-F. Lin, Y.-J. Chen, H.-Y. Cheng, and C.-L. Yang, “Tensor move-
ment orchestration in multi-gpu training systems,” in 2023 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 2023, pp. 1140–1152.

[318] X. Sun, W. Wang, S. Qiu, R. Yang, S. Huang, J. Xu, and
Z. Wang, “Stronghold: fast and affordable billion-scale deep
learning model training,” in SC22: International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE,
2022, pp. 1–17.

[319] S. Rajbhandari, O. Ruwase, J. Rasley, S. Smith, and Y. He, “Zero-
infinity: Breaking the gpu memory wall for extreme scale deep
learning,” in Proceedings of the international conference for high per-
formance computing, networking, storage and analysis, 2021, pp. 1–14.

[320] X. Nie, Y. Liu, F. Fu, J. Xue, D. Jiao, X. Miao, Y. Tao, and B. Cui,
“Angel-ptm: A scalable and economical large-scale pre-training
system in tencent,” Proceedings of the VLDB Endowment, vol. 16,
no. 12, pp. 3781–3794, 2023.

[321] H. Jang, J. Song, J. Jung, J. Park, Y. Kim, and J. Lee, “Smart-
infinity: Fast large language model training using near-storage
processing on a real system,” in 2024 IEEE International Sympo-
sium on High-Performance Computer Architecture (HPCA). IEEE,
2024, pp. 345–360.

[322] C. Liao, M. Sun, Z. Yang, K. Chen, B. Yuan, F. Wu, and Z. Wang,
“Adding nvme ssds to enable and accelerate 100b model fine-
tuning on a single gpu,” arXiv preprint arXiv:2403.06504, 2024.

[323] D. Yu, L. Shen, H. Hao, W. Gong, H. Wu, J. Bian, L. Dai, and
H. Xiong, “Moesys: A distributed and efficient mixture-of-experts
training and inference system for internet services,” IEEE Trans-
actions on Services Computing, 2024.

[324] L. Shen, Z. Wu, W. Gong, H. Hao, Y. Bai, H. Wu, X. Wu,
J. Bian, H. Xiong, D. Yu et al., “Se-moe: A scalable and efficient
mixture-of-experts distributed training and inference system,”
arXiv preprint arXiv:2205.10034, 2022.

[325] T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training deep nets
with sublinear memory cost,” arXiv preprint arXiv:1604.06174,
2016.

[326] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow:
a system for large-scale machine learning,” in 12th USENIX sym-
posium on operating systems design and implementation (OSDI 16),
2016, pp. 265–283.

[327] Z. Zhang, Y. Xia, H. Wang, D. Yang, C. Hu, X. Zhou, and
D. Cheng, “Mpmoe: Memory efficient moe for pre-trained mod-
els with adaptive pipeline parallelism,” IEEE Transactions on Par-
allel and Distributed Systems, 2024.

[328] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra,
J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine,
R. H. Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall,
“Open mpi: Goals, concept, and design of a next generation mpi
implementation,” in Proceedings, 11th European PVM/MPI Users’
Group Meeting, Budapest, Hungary, September 2004, pp. 97–104.

[329] W. Gropp, “Mpich2: A new start for mpi implementations,” in
Recent Advances in Parallel Virtual Machine and Message Passing In-
terface: 9th European PVM/MPI Users’ Group Meeting Linz, Austria,
September 29–Oktober 2, 2002 Proceedings 9. Springer, 2002, pp.
7–7.

[330] D. K. Panda, K. Tomko, K. Schulz, and A. Majumdar, “The mva-
pich project: Evolution and sustainability of an open source pro-
duction quality mpi library for hpc,” in Workshop on Sustainable
Software for Science: Practice and Experiences, held in conjunction with
Int’l Conference on Supercomputing (WSSPE), 2013.

[331] Nvidia. (2016) Nccl library. [Online]. Available: https://github.
com/NVIDIA/nccl

[332] AMD. (2018) Rccl library. [Online]. Available: https://github.
com/ROCm/rccl

[333] P. Patarasuk and X. Yuan, “Bandwidth optimal all-reduce algo-
rithms for clusters of workstations,” Journal of Parallel and Dis-
tributed Computing, vol. 69, no. 2, pp. 117–124, 2009.

[334] S. Jeaugey. (2019) Massively scale your deep learning training
with nccl 2.4. [Online]. Available: https://developer.nvidia.com/
blog/massively-scale-deep-learning-training-nccl-2-4/

[335] X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie, Z. Guo,
Y. Yang, L. Yu et al., “Highly scalable deep learning training sys-
tem with mixed-precision: Training imagenet in four minutes,”
arXiv preprint arXiv:1807.11205, 2018.

[336] H. Mikami, H. Suganuma, Y. Tanaka, Y. Kageyama et al., “Mas-
sively distributed sgd: Imagenet/resnet-50 training in a flash,”
arXiv preprint arXiv:1811.05233, 2018.

[337] J. Dong, S. Wang, F. Feng, Z. Cao, H. Pan, L. Tang, P. Li, H. Li,
Q. Ran, Y. Guo et al., “Accl: Architecting highly scalable dis-

https://github.com/pytorch/pytorch/pull/96995
https://github.com/NVIDIA/nccl
https://github.com/NVIDIA/nccl
https://github.com/ROCm/rccl
https://github.com/ROCm/rccl
https://developer.nvidia.com/blog/massively-scale-deep-learning-training-nccl-2-4/
https://developer.nvidia.com/blog/massively-scale-deep-learning-training-nccl-2-4/


41

tributed training systems with highly efficient collective commu-
nication library,” IEEE micro, vol. 41, no. 5, pp. 85–92, 2021.

[338] M. Cho, U. Finkler, D. Kung, and H. Hunter, “Blueconnect: De-
composing all-reduce for deep learning on heterogeneous net-
work hierarchy,” Proceedings of Machine Learning and Systems,
vol. 1, pp. 241–251, 2019.

[339] L. Luo, P. West, A. Krishnamurthy, L. Ceze, and J. Nelson, “Plink:
Discovering and exploiting datacenter network locality for effi-
cient cloud-based distributed training,” Proc. of MLSys, 2020.

[340] M. Cowan, S. Maleki, M. Musuvathi, O. Saarikivi, and Y. Xiong,
“Gc3: An optimizing compiler for gpu collective communica-
tion,” 2022.

[341] Z. Cai, Z. Liu, S. Maleki, M. Musuvathi, T. Mytkowicz, J. Nelson,
and O. Saarikivi, “Synthesizing optimal collective algorithms,” in
Proceedings of the 26th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2021, pp. 62–75.

[342] A. Shah, V. Chidambaram, M. Cowan, S. Maleki, M. Musuvathi,
T. Mytkowicz, J. Nelson, O. Saarikivi, and R. Singh, “{TACCL}:
Guiding collective algorithm synthesis using communication
sketches,” in 20th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 23), 2023, pp. 593–612.

[343] G. Wang, S. Venkataraman, A. Phanishayee, N. Devanur, J. The-
lin, and I. Stoica, “Blink: Fast and generic collectives for dis-
tributed ml,” pp. 172–186, 2020.

[344] N. Xie, T. Norman, D. Grewe, and D. Vytiniotis, “Synthesizing
optimal parallelism placement and reduction strategies on hierar-
chical systems for deep learning,” Proceedings of Machine Learning
and Systems, vol. 4, pp. 548–566, 2022.

[345] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang, Z. Hu, J. Wei,
P. Xie, and E. P. Xing, “Poseidon: An efficient communication
architecture for distributed deep learning on {GPU} clusters,”
in 2017 USENIX Annual Technical Conference (USENIX ATC 17),
2017, pp. 181–193.

[346] P. Sun, Y. Wen, R. Han, W. Feng, and S. Yan, “Gradientflow:
Optimizing network performance for large-scale distributed dnn
training,” IEEE Transactions on Big Data, vol. 8, no. 2, pp. 495–507,
2019.

[347] A. Jayarajan, J. Wei, G. Gibson, A. Fedorova, and G. Pekhimenko,
“Priority-based parameter propagation for distributed dnn train-
ing,” Proceedings of Machine Learning and Systems, vol. 1, pp. 132–
145, 2019.

[348] S. H. Hashemi, S. Abdu Jyothi, and R. Campbell, “Tictac: Accel-
erating distributed deep learning with communication schedul-
ing,” Proceedings of Machine Learning and Systems, vol. 1, pp. 418–
430, 2019.

[349] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, and C. Guo,
“A generic communication scheduler for distributed dnn train-
ing acceleration,” in Proceedings of the 27th ACM Symposium on
Operating Systems Principles, 2019, pp. 16–29.

[350] Y. Bao, Y. Peng, Y. Chen, and C. Wu, “Preemptive all-reduce
scheduling for expediting distributed dnn training,” in IEEE
INFOCOM 2020-IEEE Conference on Computer Communications.
IEEE, 2020, pp. 626–635.

[351] F. Li, S. Zhao, Y. Qing, X. Chen, X. Guan, S. Wang, G. Zhang, and
H. Cui, “Fold3d: Rethinking and parallelizing computational and
communicational tasks in the training of large dnn models,” IEEE
Transactions on Parallel and Distributed Systems, vol. 34, no. 5, pp.
1432–1449, 2023.

[352] S. Li, K. Lu, Z. Lai, W. Liu, K. Ge, and D. Li, “A multidimensional
communication scheduling method for hybrid parallel dnn train-
ing,” IEEE Transactions on Parallel and Distributed Systems, 2024.

[353] S. Wang, J. Wei, A. Sabne, A. Davis, B. Ilbeyi, B. Hechtman,
D. Chen, K. S. Murthy, M. Maggioni, Q. Zhang et al., “Overlap
communication with dependent computation via decomposition
in large deep learning models,” in Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 1, 2022, pp. 93–106.

[354] K. Mahajan, C.-H. Chu, S. Sridharan, and A. Akella, “Better to-
gether: Jointly optimizing {ML} collective scheduling and execu-
tion planning using {SYNDICATE},” in 20th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 23), 2023,
pp. 809–824.

[355] C. Chen, X. Li, Q. Zhu, J. Duan, P. Sun, X. Zhang, and C. Yang,
“Centauri: Enabling efficient scheduling for communication-
computation overlap in large model training via communica-
tion partitioning,” in Proceedings of the 29th ACM International

Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3, 2024, pp. 178–191.

[356] L. Zhang, S. Shi, X. Chu, W. Wang, B. Li, and C. Liu, “Dear: Ac-
celerating distributed deep learning with fine-grained all-reduce
pipelining,” in 2023 IEEE 43rd International Conference on Dis-
tributed Computing Systems (ICDCS). IEEE, 2023, pp. 142–153.

[357] A. Jangda, J. Huang, G. Liu, A. H. N. Sabet, S. Maleki, Y. Miao,
M. Musuvathi, T. Mytkowicz, and O. Saarikivi, “Breaking the
computation and communication abstraction barrier in dis-
tributed machine learning workloads,” pp. 402–416, 2022.

[358] S. Pati, S. Aga, M. Islam, N. Jayasena, and M. D. Sinclair, “T3:
Transparent tracking & triggering for fine-grained overlap of
compute & collectives,” in Proceedings of the 29th ACM Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 2, 2024, pp. 1146–1164.

[359] S. Li, Z. Lai, Y. Hao, W. Liu, K. Ge, X. Deng, D. Li, and K. Lu,
“Automated tensor model parallelism with overlapped commu-
nication for efficient foundation model training,” 2023.

[360] P. Chen, W. Zhang, S. He, Y. Gu, Z. Peng, K. Huang, X. Zhan,
W. Chen, Y. Zheng, Z. Wang et al., “Optimizing large model
training through overlapped activation recomputation,” 2024.

[361] H. Oh, J. Lee, H. Kim, and J. Seo, “Out-of-order backprop: An
effective scheduling technique for deep learning,” in Proceedings
of the Seventeenth European Conference on Computer Systems, 2022,
pp. 435–452.

[362] A. Sapio, M. Canini, C.-Y. Ho, J. Nelson, P. Kalnis, C. Kim, A. Kr-
ishnamurthy, M. Moshref, D. Ports, and P. Richtárik, “Scaling
distributed machine learning with {In-Network} aggregation,”
in 18th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 21), 2021, pp. 785–808.

[363] Y. Yuan, O. Alama, J. Fei, J. Nelson, D. R. Ports, A. Sapio,
M. Canini, and N. S. Kim, “Unlocking the power of inline
{Floating-Point} operations on programmable switches,” in 19th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 22), 2022, pp. 683–700.

[364] S. Liu, Q. Wang, J. Zhang, Q. Lin, Y. Liu, M. Xu, R. C. Chueng,
and J. He, “Netreduce: Rdma-compatible in-network reduc-
tion for distributed dnn training acceleration,” arXiv preprint
arXiv:2009.09736, 2020.

[365] Y. Liu, J. Zhang, S. Liu, Q. Wang, W. Dai, and R. C. C. Cheung,
“Scalable fully pipelined hardware architecture for in-network
aggregated allreduce communication,” IEEE Transactions on Cir-
cuits and Systems I: Regular Papers, vol. 68, no. 10, pp. 4194–4206,
2021.

[366] N. Gebara, M. Ghobadi, and P. Costa, “In-network aggregation
for shared machine learning clusters,” Proceedings of Machine
Learning and Systems, vol. 3, pp. 829–844, 2021.

[367] C. Lao, Y. Le, K. Mahajan, Y. Chen, W. Wu, A. Akella, and
M. Swift, “{ATP}: In-network aggregation for multi-tenant learn-
ing,” in 18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21), 2021, pp. 741–761.

[368] R. L. Graham, D. Bureddy, P. Lui, H. Rosenstock, G. Shainer,
G. Bloch, D. Goldenerg, M. Dubman, S. Kotchubievsky, V. Koush-
nir et al., “Scalable hierarchical aggregation protocol (sharp): A
hardware architecture for efficient data reduction,” in 2016 First
International Workshop on Communication Optimizations in HPC
(COMHPC). IEEE, 2016, pp. 1–10.

[369] L. Mai, L. Rupprecht, A. Alim, P. Costa, M. Migliavacca,
P. Pietzuch, and A. L. Wolf, “Netagg: Using middleboxes for
application-specific on-path aggregation in data centres,” in Pro-
ceedings of the 10th ACM International on Conference on emerging
Networking Experiments and Technologies, 2014, pp. 249–262.

[370] F. Yang, Z. Wang, X. Ma, G. Yuan, and X. An, “Switchagg: A fur-
ther step towards in-network computation,” in Proceedings of the
2019 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 2019, pp. 185–185.

[371] P. Costa, A. Donnelly, A. Rowstron, and G. O’Shea, “Camdoop:
Exploiting in-network aggregation for big data applications,” in
9th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 12), 2012, pp. 29–42.

[372] H. Zhu, W. Jiang, Q. Hong, and Z. Guo, “When in-network com-
puting meets distributed machine learning,” IEEE Network, 2024.

[373] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIG-
COMM Computer Communication Review, vol. 44, no. 3, pp. 87–95,
2014.



42

[374] H. Pan, P. Cui, R. Jia, P. Zhang, L. Zhang, Y. Yang, J. Wu,
J. Dong, Z. Cao, Q. Li et al., “Enabling fast and flexible dis-
tributed deep learning with programmable switches,” arXiv
preprint arXiv:2205.05243, 2022.

[375] Y. Li, I.-J. Liu, Y. Yuan, D. Chen, A. Schwing, and J. Huang,
“Accelerating distributed reinforcement learning with in-switch
computing,” in Proceedings of the 46th International Symposium on
Computer Architecture, 2019, pp. 279–291.

[376] Y. Zu, A. Ghaffarkhah, H.-V. Dang, B. Towles, S. Hand, S. Huda,
A. Bello, A. Kolbasov, A. Rezaei, D. Du, S. Lacy, H. Wang,
A. Wisner, C. Lewis, and H. Bahini, “Resiliency at Scale: Manag-
ing Google’s TPUv4 Machine Learning Supercomputer,” in 21st
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 24), 2024, pp. 761–774.

[377] J. Dong, B. Luo, J. Zhang, P. Zhang, F. Feng, Y. Zhu, A. Liu,
Z. Chen, Y. Shi, H. Jiao et al., “Boosting large-scale parallel train-
ing efficiency with c4: A communication-driven approach,” arXiv
preprint arXiv:2406.04594, 2024.

[378] T. Gershon, S. Seelam, B. Belgodere, M. Bonilla, L. Hoang, D. Bar-
nett, I. Chung, A. Mohan, M.-H. Chen, L. Luo et al., “The in-
frastructure powering ibm’s gen ai model development,” arXiv
preprint arXiv:2407.05467, 2024.

[379] T. He, X. Li, Z. Wang, K. Qian, J. Xu, W. Yu, and J. Zhou, “Unicron:
Economizing Self-Healing LLM Training at Scale,” arXiv preprint
arXiv:2401.00134, 2023.

[380] B. Wu, L. Xia, Q. Li, K. Li, X. Chen, Y. Guo, T. Xiang, Y. Chen,
and S. Li, “TRANSOM: An Efficient Fault-Tolerant System for
Training LLMs,” arXiv preprint arXiv:2310.10046, 2023.

[381] Y. Xiong, Y. Jiang, Z. Yang, L. Qu, G. Zhao, S. Liu, D. Zhong,
B. Pinzur, J. Zhang, Y. Wang et al., “Superbench: Improving cloud
ai infrastructure reliability with proactive validation,” in 2024
USENIX Annual Technical Conference (USENIX ATC 24), 2024, pp.
835–850.

[382] T. Gupta, S. Krishnan, R. Kumar, A. Vijeev, B. Gulavani, N. Kwa-
tra, R. Ramjee, and M. Sivathanu, “Just-in-time checkpointing:
Low cost error recovery from deep learning training failures,”
in Proceedings of the Nineteenth European Conference on Computer
Systems, 2024, pp. 1110–1125.

[383] A. Group. (2024) Dlrover: An automatic distributed deep
learning system. [Online]. Available: https://github.com/
intelligent-machine-learning/dlrover

[384] X. Lian, S. A. Jacobs, L. Kurilenko, M. Tanaka, S. Bekman,
O. Ruwase, and M. Zhang, “Universal checkpointing: Efficient
and flexible checkpointing for large scale distributed training,”
arXiv preprint arXiv:2406.18820, 2024.

[385] A. Eisenman, K. K. Matam, S. Ingram, D. Mudigere, R. Kr-
ishnamoorthi, K. Nair, M. Smelyanskiy, and M. Annavaram,
“{Check-N-Run}: A checkpointing system for training deep
learning recommendation models,” in 19th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 22), 2022,
pp. 929–943.

[386] “Torchsnapshor: A performant, memory-efficient checkpointing
library for pytorch applications, designed with large, complex
distributed workloads in mind.” [Online]. Available: https:
//github.com/pytorch/torchsnapshot

[387] B. Nicolae, J. Li, J. M. Wozniak, G. Bosilca, M. Dorier, and F. Cap-
pello, “Deepfreeze: Towards scalable asynchronous checkpoint-
ing of deep learning models,” in 2020 20th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Internet Computing (CC-
GRID). IEEE, 2020, pp. 172–181.

[388] J. Mohan, A. Phanishayee, and V. Chidambaram, “{CheckFreq}:
Frequent,{Fine-Grained}{DNN} checkpointing,” in 19th
USENIX Conference on File and Storage Technologies (FAST 21),
2021, pp. 203–216.

[389] M. Chen, Y. Hua, R. Bai, and J. Huang, “A cost-efficient failure-
tolerant scheme for distributed dnn training,” in 2023 IEEE 41st
International Conference on Computer Design (ICCD). IEEE, 2023,
pp. 150–157.

[390] A. Maurya, R. Underwood, M. M. Rafique, F. Cappello, and
B. Nicolae, “Datastates-llm: Lazy asynchronous checkpointing
for large language models,” arXiv preprint arXiv:2406.10707, 2024.

[391] G. Wang, O. Ruwase, B. Xie, and Y. He, “Fastpersist: Accel-
erating model checkpointing in deep learning,” arXiv preprint
arXiv:2406.13768, 2024.

[392] Z. Wang, Z. Jia, S. Zheng, Z. Zhang, X. Fu, T. E. Ng, and Y. Wang,
“Gemini: Fast failure recovery in distributed training with in-

memory checkpoints,” in Proceedings of the 29th Symposium on
Operating Systems Principles, 2023, pp. 364–381.

[393] Y. Wang, S. Shi, X. He, Z. Tang, X. Pan, Y. Zheng, X. Wu, A. C.
Zhou, B. He, and X. Chu, “Reliable and Efficient In-Memory Fault
Tolerance of Large Language Model Pretraining,” arXiv preprint
arXiv:2310.12670, 2023.

[394] J. Duan, Z. Song, X. Miao, X. Xi, D. Lin, H. Xu, M. Zhang, and
Z. Jia, “Parcae: Proactive, Liveput-Optimized DNN Training on
Preemptible Instances,” arXiv preprint arXiv:2403.14097, 2024.

[395] I. Jang, Z. Yang, Z. Zhang, X. Jin, and M. Chowdhury, “Oobleck:
Resilient distributed training of large models using pipeline tem-
plates,” in Proceedings of the 29th Symposium on Operating Systems
Principles, 2023, pp. 382–395.

[396] J. Thorpe, P. Zhao, J. Eyolfson, Y. Qiao, Z. Jia, M. Zhang, R. Ne-
travali, and G. H. Xu, “Bamboo: Making preemptible instances re-
silient for affordable training of large {DNNs},” in 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
23), 2023, pp. 497–513.

[397] S. Gandhi, M. Zhao, A. Skiadopoulos, and C. Kozyrakis, “Slip-
stream: Adapting pipelines for distributed training of large dnns
amid failures,” arXiv preprint arXiv:2405.14009, 2024.

[398] M. Research. (2022) Metaseq: Opt-175 logbook. [Online]. Avail-
able: https://github.com/facebookresearch/metaseq/blob/
main/projects/OPT/chronicles/OPT175B Logbook.pdf

[399] Y. Gao, X. Shi, H. Lin, H. Zhang, H. Wu, R. Li, and M. Yang, “An
empirical study on quality issues of deep learning platform,” in
2023 IEEE/ACM 45th International Conference on Software Engineer-
ing: Software Engineering in Practice (ICSE-SEIP). IEEE, 2023, pp.
455–466.

[400] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra,
A. Roberts, P. Barham, H. W. Chung, C. Sutton, S. Gehrmann
et al., “Palm: Scaling language modeling with pathways,” Journal
of Machine Learning Research, vol. 24, no. 240, pp. 1–113, 2023.

[401] NVIDIA, “Nvidia data center gpu manager (dcgm),”
https://developer.nvidia.com/dcgm, 2017.

[402] M. Steinman. (2023) Taking stock of new data center
computing paradigm. [Online]. Available: https://www.eetimes.
com/taking-stock-of-new-data-center-computing-paradigm/

[403] Z. Xu, T. Zhou, M. Ma, C. Deng, Q. Dai, and L. Fang, “Large-scale
photonic chiplet taichi empowers 160-tops/w artificial general
intelligence,” Science, vol. 384, no. 6692, pp. 202–209, 2024.

https://github.com/intelligent-machine-learning/dlrover
https://github.com/intelligent-machine-learning/dlrover
https://github.com/pytorch/torchsnapshot
https://github.com/pytorch/torchsnapshot
https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/OPT175B_Logbook.pdf
https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/OPT175B_Logbook.pdf
https://www.eetimes.com/taking-stock-of-new-data-center-computing-paradigm/
https://www.eetimes.com/taking-stock-of-new-data-center-computing-paradigm/

	Introduction
	Background
	Transformer-based LLMs
	LLM Training Workloads Characteristics
	LLM Training Challenges
	Related Survey

	Infrastructure for LLM Training
	AI Accelerators
	NVIDIA Graphics Processing Unit (GPU)
	Other AI Accelerators

	Network Infrastructure
	Chip-to-Chip Communications
	Node-to-Node Communications
	Network Topology
	Load Balancing & Congestion Control

	Storage
	Storage Systems for Checkpoint
	Storage Systems for Training Data

	Scheduling
	Workload Scheduling
	Resource Scheduling


	Parallelism Schemes for LLM Training
	Hybrid Parallelism
	Data Parallelism
	Tensor parallelism
	Pipeline Parallelism
	Sequence parallelism
	Expert Parallelism

	Auto Parallelism
	General Framework
	Transformer-Specific Framework

	Heterogeneous Parallelism
	Heterogeneous Hardware
	Heterogeneous Model


	Computation Optimizations
	Operator Optimizations
	Manually Optimized Attention Operator
	Automatic Optimizations via Compilers

	Mixed-precision Training
	16-Bit Floating Point
	Sub-8-Bit Floating Point
	Low-Bit Fixed Point


	Memory Optimizations
	Activation Recomputation
	Static Evicting
	Dynamic Evicting

	Redundancy Reduction
	Fully Sharding
	Partially Sharding

	Defragmentation
	Tensor-based Defragmentation
	VMM-based Defragmentation

	Offloading
	CPU Offloading
	Dynamic Offloading
	SSD Offloading


	Communication Optimizations
	Collective Communication
	Pre-Defined Collective Communication Algorithm
	Synthesized Collective Communication Algorithm

	Communication Scheduling
	FIFO-based Scheduling
	Priority-based Scheduling
	Decomposition-based Scheduling

	In-Network Aggregation
	Ethernet-based Aggregation
	Infiniband-based Aggregation


	Fault Tolerance
	LLM Failure Analysis
	Anomaly Detection
	Statistical Monitoring
	Proactive Validation

	Checkpoint-Based Recovery
	Persistent Checkpointing
	In-Memory Checkpointing

	Checkpoint-Free Recovery
	Live Migration
	Module Redundancy


	Conclusion and Outlooks
	References

