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Abstract—We study the fair cache allocation problem in shared
cloud environments, where many users and applications contend
for the main memory to cache shared datasets or files. Unlike
other resources such as CPUs and networks, in-memory caches
can be non-exclusively shared across many users, e.g., a cached
columnar dataset queried by many Spark SQL jobs. This results
in a unique challenge of the ‘“free-riding” problem, where a
user lies about its caching preferences to trick other users
to cache files for it, using their allocated cache space. We
show that existing cache allocation policies either suffer from
such manipulations or result in poor efficiency. To address this
problem, we propose a new cache allocation algorithm, termed
OpuS, or Opportunistic Sharing for high efficiency. We show
that OpuS provides performance isolation between users and
is strategy-proof against “free-riding” manipulations. We have
implemented OpuS as a pluggable cache manager in Alluxio,
a popular memory-centric filesystem. Cluster deployment and
trace-driven simulations demonstrate that OpuS allocates each
user a fair share of caches while achieving near-optimal efficiency
in cache utilization.

I. INTRODUCTION

Today’s data analytics clusters are shifting towards in-
memory computations, ranging from big data analytics [1]-[3]
to distributed machine learning [4]-[6] and key-value stores [2],
[7], [8]. By caching input and intermediate datasets in memory,
users can gain orders of magnitude improvement for I/O-
intensive jobs. With a surging volume of data moving into the
main memory, users compete for the limited in-memory caches
in shared, multi-tenant clouds. To ensure both performance
isolation for individual users and high utilization of the system,
there is a pressing need to enforce fair cache allocation, with
the following three desirable properties as summarized in [9]:

1) Isolation guarantee: by sharing the caches, each user
should get no fewer files in memory than it would have
had with an isolated and evenly partitioned cache.

2) Strategy-proofness: a user cannot have more files in
memory at the expense of another by lying about its
demand of caching a file.

3) Pareto efficiency: it is not possible to cache more files
for a user without evicting files of another.

Unfortunately, prevalent cache management policies, e.g.,
both recency- and frequency-based algorithms (notably LRU
and LFU), aim to optimize the global cache hit ratio, without
any isolation guarantee. Consequently, users accessing files at
long intervals or low frequencies tend to get their files evicted
from the memory.

On the other hand, simply maintaining an isolated cache for
each user, while guaranteeing isolation, is highly inefficient.
It is common to have multiple users or jobs requesting the
same dataset in shared cloud environments. For example, a
columnar dataset stored as Parquet files [10] is usually queried
by many Spark SQL jobs from different users. In fact, it has
been observed in a production HDFS cluster that over 30% of
files were shared by at least two users [9]. Providing isolated
caches leads to multiple copies of shared files, which not only
wastes memory space but also results in a significant drop in
the write performance due to frequent in-memory replications.

Moreover, the special characteristic that cached files can be
non-exclusively shared across multiple users poses a unique
“free-riding” problem [9]. That is, instead of using its own
allocated cache to persist files it requests, a strategic user seeks
to “free-ride” on others who have a strong need to cache the
same files, and thus can save its cache space at the expense
of others. The traditional max-min fair allocation is subject to
exactly this manipulation [9]. In fact, Pu et al. [9] established
a negative result that no allocation can achieve all the three
properties listed above due to free-riding. The state-of-the-art
solution goes to FairRide [9], which seeks to block free-riders,
and provides service isolation with the minimum efficiency
loss. However, as we shall show in Sec. III-D, FairRide fails to
prevent free-riding, as strategic users can still game the system
to improve their cache performance at the expense of others.

In this paper, we revisit the fundamental problem of fair
and efficient cache allocation in shared cloud environments.
We propose a new cache allocation algorithm, termed OpuS
(Opportunistic Sharing for high efficiency). We show that OpuS
is capable of 1) providing isolation guarantee, 2) eliminating the
incentive of free-riding, and 3) attaining near-optimal efficiency
in cache utilization. OpuS achieves these properties through
a two-stage allocation algorithm built on the classic Vickrey-
Clarke-Groves (VCG) mechanism [11]-[13]. In the first stage,
OpusS strives to share caches for high efficiency by framing
proportional fairness into the VCG mechanism. If the resultant
allocation provides isolation guarantee, OpuS settles on sharing.
Otherwise, it resorts to isolated allocation in the second stage,
in which each user is allocated an isolated cache of equal size.

We have implemented OpuS as a pluggable cache manager
in Alluxio [14], a popular in-memory filesystem for big data
analytics. We evaluated the performance of OpuS through
both cluster deployment in Amazon EC2 and trace-driven



simulations at large scale. Our EC2 deployment confirms that
OpuS eliminates the incentive of free-riding manipulations.
In terms of efficiency measured by the cache hit ratio, OpuS
outperforms FairRide by 16.6% and comes within 7% of the
global optimum. We also evaluated the computational overhead
of our implementation in a wide range of settings. Evaluation
results show that OpusS is capable of making cache allocations
in a few seconds with up to 150 users sharing the cache in
multi-tenant clouds.

II. SYSTEM MODEL AND DESIGN OBJECTIVE

In this section, we describe our model for cache allocation
in shared cloud environments. We then formalize the three
desirable properties for cache allocation outlined in the previous
section.

A. Background and Model

Background: Given the huge performance advantage of in-
memory computations, cloud users aggressively cache their
frequently accessed datasets or files (e.g., RDDs [1], HDFS
and Parquet [10] files) in RAM. A file, if requested by multiple
users, can be non-exclusively shared by all of them. For
example, a MapReduce job performing data extraction usually
caches its output for SQL queries submitted by other users.
A machine learning job dynamically predicting the ad click-
through rate caches the trained model in parameter servers [5],
[6], which is simultaneously used by multiple business-critical
jobs for ad recommendation.

Caching Request: We assume that there are /N users sharing
M files in a cluster. The cache preference of user i for file I}
is denoted by p; ;, which can be either explicitly reported by
the user through an API or implicitly inferred from its access
history, e.g., the access frequency. We normalize each user’s
caching preference such that Zjle pi,; = 1. Specifically, if
user ¢ has no interest in caching a file F}, its caching preference
of that file is set to zero, i.e., p; ; = 0. Preference normalization
eliminates the discrimination against users with relatively low
caching demands (e.g., low file access rate), improving fairness.
We model the file caching requests by a weighted bipartite
graph consisting of the user vertices and the file vertices. In the
graph, a user vertex ¢ and a file vertex F}; is connected through
an edge if user ¢ requests to cache file F};, and the caching
preference p; ; is associated with the edge as the weight. Fig. 1
illustrates an example, where user A requests to cache two
files F and F5, and user B requests to cache F> and Fj.

Cache Allocation: Without loss of generality, we assume that
files are of unir size! and can be cached in fractions (e.g.,
caching only a few blocks of the file). Given the file caching
requests of users, the cache allocation algorithm determines
which files are cached and how much memory is allocated
to each file. Formally, for file F}, the algorithm computes its
cache allocation a;, where 0 < a; < 1. The constraint is that
caches should not be overallocated, i.e., Z]Ail a; < C, where
C is the total capacity of the available cluster caches.

IA file of size s can be equivalently treated as s file chunks of unit size.
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Fig. 1: An example of the caching request graph where two
users A and B share three files Fy, F5, and F3 of unit size.
Users’ cache preferences are shown as the weights associated
with the edges. The numbers in brackets denote the historical
access frequencies. The cluster has two units of caches in total,
which are allocated to cache the entire F5 and half of F and
F5 (highlighted as shaded areas).

We stress that there is no need to differentiate how cache
allocation a; is distributed to different users, simply because a
cached file can be non-exclusively shared across them. Referring
back to the example of Fig. 1, we assume that there are 2 units
of caches, which are allocated to persist file 5 as a whole
and files Fy and F3 in half. Since F3 is cached for the two
users, it is accessible to both of them.

User Utility: Once cache allocation a = (aj,...,ap) has
been determined, we measure the cache performance of a user
by its utility, defined as the sum of allocations weighted by its
caching preferences, i.e.,

Us(a) = Y72, a;pis- (M

Specifically, if the caching preference of a file is sorted out
based on its access frequency, the utility function (1) measures
exactly the expected cache hit ratio. In the example of Fig. 1,
both users have the same utility: 0.4 x % + 0.6 =0.8.

B. Desirable Properties

We motivate three properties for cache allocation: isolation
guarantee, strategy-proofness, and Pareto efficiency. These
properties are not only desired for cache allocation [9], but
also required for allocating other resources such as CPUs and
networks in multi-tenant clouds [15].

1) Isolation Guarantee: In a nutshell, isolation guarantee
ensures each user to cache no fewer files in memory than it
would have had with an isolated cache of equal size.

Definition 1 (Isolation guarantee). Let U; be the utility of user
1 if the entire cache space is equally divided among N users,
each receiving an isolated cache of size % An allocation a
is said to provide isolation guarantee if each user v receives a
utility no less than that of isolation, i.e., U;(a) > U,.

We refer to Fig. 1 and show that the depicted allocation
provides isolation guarantee. By Eq. (1), both users gain the
same utility 0.8 from cache sharing in Fig. 1. We now consider
the case of isolation, where the entire caches are evenly split
into two isolated ones for two users, each receiving a unit size.
Since both users prefer file F» the most, they would cache
it separately. Each user gains a lower utility 0.6 and thus is
better off sharing than isolation.



2) Strategy-proofness: Multi-tenant systems are prone to
harmful manipulations [9], [16]. We shall show later that a
manipulator may game the system to “free-ride” on other
users by faking its caching preferences, e.g., making spurious
accesses if the cache preferences are inferred from historical
access frequency. We hence require strategy-proofness to
eliminate the incentive of such manipulations.

Definition 2 (Strategy-proofness). No user can fake its caching
preference to gain more utility at the expense of others.
Specifically, for user i, let a be the cache allocation when
it is truthful, and a’ be the allocation when it is not. We
have U;(a’) > U;(a) only if Ug(a’) > Ug(a) for all user k.
Meaning, cheating can only benefit other users.

3) Pareto Efficiency: Cloud operators strive to achieve high
utilization of in-memory caches, which promotes the property
of Pareto efficiency.

Definition 3 (Pareto efficiency). It is not possible to improve
a user’s utility without decreasing that of another.

We shall use the three properties above as our guidelines to
develop a fair cache allocation algorithm. Ideally, our objective
is to achieve all the three properties at the same time.

III. ANALYSIS OF EXISTING SOLUTIONS

In this section, we analyze existing cache management poli-
cies, including recency- and frequency-based cache replacement
policies, isolated caches, max-min fair allocations, and the state-
of-the-art solution FairRide [9]. We show that these policies
either result in poor cache utilization or suffer from strategic
manipulations.

A. Recency- and Frequency-based Cache Replacement

Recency- and frequency-based cache replacement algorithms,
notably LRU (least-recently-used) and LFU (least-frequently-
used), serve as the de facto cache management policies in
today’s data analytics clouds, e.g., [1]-[3], [7], [8]. These
algorithms aim to maximize the global cache hit ratio but are
incapable of providing isolation among users. Users accessing
files at long intervals or low frequencies may gain little
performance improvement in shared caches, as their requested
files are likely to be evicted out of the memory. Worse still,
recency- and frequency-based algorithms promote cheating. By
spuriously accessing their preferred files, strategic users can
force the system to evict files requested by others, grabbing
more cache space from the well-behaved users [9].

B. Isolated Caches

Maintaining an isolated cache for each user is another com-
mon approach in shared cloud environments. By evenly dividing
in-memory caches into dedicated partitions for individual users,
we can trivially achieve both isolation guarantee and strategy-
proofness. However, the price we paid is a significant utilization
loss in two aspects. First, multiple copies of a shared file will
be cached separately for different users, wasting not only the
memory space, but also the write bandwidth. Second, users
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Fig. 2: Tllustration of the free-riding manipulation under max-
min fair allocation in Fig. 1. User B lies about its caching
preferences (shown as the dotted lines) by spuriously accessing
file F3. This allows user B to cache the entire F5 while free-
riding on file F; cached solely by user A (highlighted as shaded
area).

with low memory footprint may not fully utilize their allocated
caches, resulting in even more utilization loss.

C. Max-min Fair Allocations

The popular max-min fair allocation seeks to maximize the
minimum allocation across users. It is essentially a market-
based allocation where users are given budget to purchase
or trade resources in a perfectly competitive market. Max-
min fairness and its variants have achieved a wide success
for allocating other resources, such as CPU cycles and link
bandwidth, in shared, multi-tenant environments [17]-[19].
These resources, once allocated to a user, cannot be accessed
by another. In contrast, memory caches distinguish themselves
as being non-exclusively sharable across multiple users at the
same time. This gives rise to a new problem of “free-riding,
due to which directly applying max-min fairness to cache
allocation is not strategy-proof.

s

Max-min Fair Cache Allocation: To converge to a max-min
fair allocation, each of the N users is given an equal budget of
% cache units and uses it to cache its desired files. If multiple
users want to cache the same file, they evenly share the cost
of caching. Meaning, each user is charged % units, where n is
the number of users paying to cache.

We show that the allocation in Fig. 1 is max-min fair. Initially,
each user is given an even budget of one unit for caching. Since
file F5 is the most desired for the two users, it is cached for
both users each contributing 0.5 units of budget. Each user
has a remaining budget of 0.5 units and uses it to cache the
next desired file (file F for user A and F3 for user B). But
this time, it shares the cost with nobody as it is the only one
who wants to cache that file. Therefore, each user uses up its
remaining budget and caches half of its next desired file, as
shown in Fig. 1.

Free-riding: Unfortunately, the max-min fair allocation in the
previous example is not strategy-proof. To see this, we assume
that user B is strategic and claims that it prefers file F5 to Fb.
As shown in Fig. 2, assuming the cache preference is inferred
from the access frequency, user B can make spurious accesses
to file F3, so as to manipulate its preference over Fb. Such a
manipulation allows user B to use all its budget to persist file
F3 as a whole, forcing user A to cache its most desired file



F5 at its own expense. User B can now “free-ride” on user A
by sharing its cached file F, without paying for it. In the end,
user B gains a higher utility by having more files in memory
at the expense of user A.2

D. FairRide

FairRide Algorithm: In order to eliminate the incentive of
cheating under max-min fair allocations, Pu et al. [9] proposed
FairRide to penalize free riders. Specifically, FairRide identifies
a user as a free rider of a cached file if the user wants to access
that file without sharing the cost of caching. FairRide randomly
blocks a free rider from accessing a cached file in memory,
with probability %_H where n is the number of users who pay
to cache the file. A free rider, once blocked from in-memory
access, has to access the file from a stable storage, as if it
were a cache miss.?

We refer back to the previous example of Fig. 2. Since user
B has contributed nothing to cache file F5, it acts as a free
rider, and its in-memory access to file F5 will get blocked by
FairRide with probability ﬁ = % which decreases its utility
(hit rate) to 0.6 x 3 + 0.4 x 1 = 0.7. This is lower than what
user B would have gained by staying truthful in Fig. 1, where
it pays to cache both F5 and F3 and can freely access the two
files without getting blocked. User B hence has no incentive
to lie about its caching preference.

According to [9], by blocking free-riding with probability
%4—1’ FairRide aligns a user’s benefit-cost ratio with its caching
preference, which is the key to inducing truthful behaviors. In
general, suppose that user ¢ is interested in caching file F)
together with the other n users, which would cost user 7 a
budget of n-l‘rl units. In return, user ¢ is entitled to a full access
to the cached file without getting blocked with probability %_H
Therefore, the utility gained through caching Fj is %Hpiﬁj’
and the benefit-cost ratio is p; j, which is exactly the caching
preference. Note that with a given a budget, the optimal strategy
of a user is to cache files in a descending order of the benefit-
cost ratio. This implies that files are cached following their

preferences, and users have no incentive to cheat.

Cheating in FairRide: However, to our surprise, the argument
above does not always hold. We show through a counterexample
that FairRide’s probabilistic blocking of free-riding is incapable
of eliminating strategic manipulations. In particular, as in Fig. 3,
we assume that four users request to cache three files in a shared
cluster with two units of in-memory caches. With FairRide,
each user is given an equal budget of 0.5 units to cache its
desired files. Fig. 3a illustrates their caching preferences.

We start with the case where each user behaves truthfully.
We focus on user B, who seeks to cache its most desired file
I at the beginning. Since F5 is also the top choice of users
C and D, the three equally share its cost of caching, each
contributing % units. User B has % units spared and uses it to

Note that user B has many cheating options to game the system: as long as
it claims that it prefers file F3 to Fb, the outcome would remain unchanged.

3The implementation of FairRide does not enforce on-disk reading but
artificially delays in-memory access to emulate the blocking effects.

1. 045 055
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Fig. 3: An example showing that FairRide is not strategy-proof.
There are two units of caches in total, and each user is allocated
a budget of 0.5 units. (a) All users are truthful. (b) User B
has more files cached by misreporting its caching preference.

cache its next desired file F}, together with user A who has
2

not spent its budget so far. The two users cache % + % =3
units of Fj, of which the first % units are shared by both
users, each contributing §. The second 3 units are cached
solely for user A, as user B has run out of budget. Therefore,
user B has a full access to the first % share it owns, but gets
blocked with probability 1_%1 = % when accessing the second
% share. Adding to the fully cached file F5, user B gains utility
0.45 x (3 + % x 2)+0.55 = 0.78.

We next show that user B can lie about its caching preference
to gain a higher utility at the expense of users C' and D. As
shown in Fig. 3b, suppose that user B claims that it prefers
file F to file F> and uses all its budget to cache the entire
Fy, together with user A. This forces users C' and D to go
all-in to persist file Fy. In this case, user B has a full access
to file F}, but is treated as a free rider of file F> subject to
random blocking with probability ﬁll = é User B gains
utility 0.45 + 0.55 x (1 — %) = 0.82, which is higher than
it would have gained by telling the truth. User B will hence
report its cache preferences as in Fig. 3b instead of behaving
truthfully to game for higher utility.

We stress that FairRide is not strategy-proof, regardless
of whether the cache preferences are specified by users or
inferred from the underlying file access frequencies. In fact, as
we shown in Sec. III-C, if the preferences are determined by
the actual file request rates, users can easily manipulate their

caching demands by making spurious file accesses.

E. Negative Results for Cache Allocation

The violation of strategy-proofness illustrated by the coun-
terexample above raises a natural question: can we come up
with some new blocking probabilities to eliminate the incentive
of cheating in FairRide? Unfortunately, we show through the
following theorem that this is not possible.

Theorem 1 (Impossibility). No blocking probability f(n) can
achieve strategy-proofness for FairRide, where n is the number



TABLE I: Properties of existing cache allocation policies and
our solution OpusS: isolation guarantee (IG), strategy-proofness
(SP), and Pareto efficiency (PE).

1G SpP PE
Recency/Frequency v
Isolated Cache v v
Max-min Fairness v v
FairRide v Near-optimal
OpuS v v Near-optimal

of users who pay to cache a file, and f(-) is an arbitrary
function whose value falls into the range between 0 and 1.

Proof: It was proved in [9] that to achieve strategy-
proofness through probabilistic blocking, each user’s benefit-
cost ratio must align with its caching preference. It was also
proved that —=5 is the only candidate probability that may
serve this purpose [9, Sec. 5.2]. We now refer to the previous
counterexample in Fig. 3 and show that even with this blocking
probability, user B can attain a higher benefit-cost ratio of
caching file F} than its preference. Indeed, if user B chooses
not to cache file F}, half of F} will be cached by user A,
to Which the access of user B gets blocked With probability
ﬁ . User B hence gains utility 0.45 x ; = 0.11 from
the half cached Fj. Now suppose that user B changes its
mind and invests all its budget on Fj together with user A.
This time, the file is fully cached for both users, from which
user B gains utility 0.45. Therefore, the benefit-cost ratio is
% = 0.68, higher than user B’s caching preference
0.45. ]

The negative result established by Theorem 1 mandates a
ground-up redesign of fair cache allocation, which we shall
discuss in the next section. Table I summarizes the properties
of existing cache allocation policies and our solution. We note
that none of them retains all the three desirable properties. This
is no accident, but a direct consequence of the following SIP
theorem proved by Pu et al. [9].*

Theorem 2 (SIP [9, Sec. 5.1]). No cache allocation algorithm
can satisfy strategy-proofness (S), isolation guarantee (I), and
Fareto efficiency (P) at the same time.

The incompatibility of the three properties is uniquely found
for cache allocation in that caches are non-exclusively shared
across multiple users. Following [9], we require our solution
to satisfy both isolation guarantee and strategy-proofness, with
minimum efficiency loss.

IV. OPPORTUNISTIC SHARING FOR HIGH EFFICIENCY

In this section, we present our solution for fair cache
allocation, which we call OpuS, or Opportunistic Sharing
for high efficiency. We show that OpuS provides isolation
guarantee and is immune to harmful manipulations. The price
paid is a slight efficiency loss.

4While the strategy-proofness claim of FairRide made in [9] is incorrect
(Sec. III-D), the SIP theorem stated in the same paper [9] does hold. The proof
of SIP theorem is independent of the (erroneous) strategy-proofness analysis.

A. Overview of OpuS

Among all allocation alternatives, having isolated caches
of equal size for individual users serves as a baseline, under
which users are guaranteed with isolation and have no incentive
to lie about their caching preferences. However, this baseline
falls short of achieving high utilization, as users are forced to
maintain separate copies of a shared file. In fact, any allocation
with isolation guarantee achieves no lower utilization. This
motivates us to seek opportunities to share cached files among
users for higher efficiency atop the isolation baseline.

Our solution OpuS follows exactly this intuition. OpusS is a
two-stage algorithm. In the first stage, it strives to share caches
for high efficiency without suffering harmful manipulations.
It then checks if the sharing outcome provides isolation for
individual users. If no user prefers isolation, the algorithm
settles on sharing. Otherwise, the attempt of sharing caches
has not succeeded, and the algorithm reduces to the baseline
isolation in the second stage.

In order to achieve high cache utilization, we should prevent
the algorithm from reducing to the baseline isolation as much
as possible. This requires us to design an efficient and strategy-
proof cache sharing algorithm in the first stage that likely
provides isolation guarantee.

B. Opportunistic Cache Sharing using VCG Mechanism

Our first attempt for opportunistic cache sharing builds on
the classic VCG mechanism [11]. The VCG mechanism offers
two desirable properties. First, it is strategy-proof. Second, it
is efficient in that it allocates resources in a socially optimal
manner. Specifically, the VCG mechanism seeks to maximize
the social welfare, defined as the sum of utilities of all users, i.e.,
to maximize ) . U;(a). To enforce truth-telling, the mechanism
taxes each user the externalities it causes, i.e., the loss of social
welfare of the others due to the presence of the user. In the
context of cache sharing, the VCG tax can be charged by
probabilistically blocking a user’s access to a cached file.

However, as we shall show in Sec. VI-B, using the VCG
mechanism to opportunistically share caches ends up with
little efficiency improvement. Because it targets to optimize
the global social welfare, users making smaller contributions
are forced to give way to others who can contribute more.
More often than not, the former users would prefer isolated
caches to sharing. The result is a frequent violation of isolation
guarantee under a VCG allocation, which forces the algorithm
to reduce to isolated caches as the last resort.

C. OpuS: Opportunistic Sharing for High Efficiency

The lesson we learnt from the failure of the VCG mechanism
is that cache sharing in the first stage must factor in the
requirement of isolation guarantee. This inspires us to turn
to proportional fairness (PF) [20] for cache allocation, under
which isolation guarantee is provided while high efficiency can
also be attained [21].



In particular, we say allocation a is proportionally fair if,
for any other allocation a’, the sum of proportional changes
of utilities is non-positive, i.e.,

., St <o

In other words, the PF allocation achieves the highest
aggregated percentage gain among all the other allocations,
hence striking a good balance between fairness and effi-
ciency [22]. Equivalently, a PF allocation maximizes the social
welfare assuming logarithm utility [21], [23], i.e., it maximizes
> logUi(a).

Unfortunately, proportional fairness is not strategy-proof and
cannot be directly applied to cache allocation. To address this
problem, we frame PF allocation into the VCG mechanism
(referred to as VCG-PF) assuming logarithm utility, which we
call virtual utility.

Definition 4 (Virtual utility). Given allocation a, we define
Vi(a) =logU;(a) as the virtual utility of user i. Here, U;(a)
measures the utility user © gains by having a full access fo the
cached files in allocation a, i.e., Ui(a) =3, a;jp; ;.

With this virtual utility, we apply the VCG mechanism. This
time, the mechanism is tricked to seek PF allocation, in that it
maximizes social welfare in terms of the virtual (logarithm)
utility.

maximize,
s.t.

> Vi(a) =2 ;logUi(a),
Z] a’j S Ca
0 <a; <1, for all file F}.

2)

We denote by a* the PF allocation obtained by solving
problem (2). Once the allocation has been determined, the
VCG mechanism charges each user a tax payment following the
Clarke pivot rule [24, Chapt. 9.3.4]. Specifically, to determine
the tax payment of user ¢, we exclude the user from the
participants and recompute PF allocation a* ; that solves (2)
as if user ¢ were absent. The VCG tax charged to user ¢ is

T =2 hs V(@) = 25 Vi(@®). 3)

Intuitively, user ¢ pays an amount equal to the total loss that it
causes to other users—the difference between the virtual social
welfare of others with and without its participation.

Now that user 4 gains V;(a*) but pays T}, its net income is
simply V;(a*) — T;. Recall that all the computations so far are
based on the virtual utility taken logarithm. We exponentiate
net income V;(a*) — T; to recover the user’s net utility:

Urt(at) = exp (Vi(a®) — T2) = exp(-T) - Usfa®). (4

Because the VCG mechanism charges non-negative tax, we
have T; > 0 and 0 < exp(—7;) < 1. In essence, user i gains
exp(—T;) share of the utility under PF allocation. From a
user’s perspective, this is equivalent to randomly blocking its
access to the cached files with probability

fi=1—exp(-T;). &)

Algorithm 1 OpuS: Opportunistic Sharing for high efficiency

: procedure OPUS({p; ;})
(a*,{T:}) <~ VCG_PE({p: ;})
if Provides_IG(a™, {T;}) then

return (a*, {T;})

1 > {ps,; }: caching preference
2

3

4

5: else

6

7

8

> Seek to share cache
> Settle on cache sharing

return isolated allocation a > Reduce to isolation

: procedure PROVIDES_IG(a*, {T;})
for all user 7 do

9: if T; > T; then > T;: break-even tax following (6)
10: return False

11: return True

12: procedure VCG_PF({p; ;}) > VCG-PF mechanism
13: a* < PF allocation that solves (2)

14: for all i do

15: a”; < PF allocation that solves (2) w/o user i’s presence
16: T; <_Zk;éi Vi(a®;) _Zkyﬁi Vi (™)

17: return (a*,{T;})

We stress that the VCG tax charged to users, though
resulting in a utility loss, is needed to enforce strategy-
proofness. However, depending on the amount of tax, isolation
guarantee can be violated. We quantify the break-even amount
for each user through the following theorem. The proof is
straightforward and is omitted.

Theorem 3. For user 1, its break-even tax is
_ Uz- *
T; = log ﬁ7
U,

i

(6)

where U; measures the utility it gains from isolation. User i
would prefer isolation if and only if it is charged more than
the break-even, i.e., UM (a*) < U; iff T; > T;.

In cases when a user is charged more than the break-even
tax, isolation guarantee is violated, and the attempt of seeking
high efficiency through PF allocation fails. As the last resort,
the algorithm turns to isolation by evenly dividing in-memory
caches into dedicated partitions for individual users. We shall
show in Sec. VI-B that this is less likely to happen. Because
PF allocation is efficient with strong isolation guarantee (i.e.,
U;(a*) > U; for all 1), the break-even tax 7T} is usually high.
This gives users a deep pocket to afford a high tax.

Algorithm 1 summarizes the entire process described above,
which we call OpuS. To better illustrate OpuS, we give a
running example as follows.

Example: We refer back to the example in Fig. 1 and explain
how OpuS works. OpuS starts to seek PF allocation for high
efficiency, which caches the entire file F5 but half of F3} and
F5 (depicted in Fig. 1). The mechanism then charges each user
an amount equal to the utility loss it causes to other users. We
take user B as an example for tax calculation. Should it be
absent, user A would have monopolized the cache with two
files F; and F, in memory. Therefore, the presence of user B
results in A losing half of file F}. User B pays the damage
it causes, and is charged 75 = log1 — log 0.8 = log 1.25. By
(4), user B gains net utility 0.64, which is higher than it would



have gained from isolation (i.e., Up = 0.6). By symmetry, the
same calculation also applies to user A. Since no user prefers
isolation, OpuS settles on the PF allocation.

We next turn to Fig. 2, where we assume that user B lies
and claims that it prefers file F5 to F>. We show that user
B gains less net utility by cheating. OpuS starts with PF
allocation. Given the claimed caching preferences, both files
F5 and F3 are cached. Compared with Fig. 1, user B gains
higher utility with more files in memory. However, such a
utility gain is not justified: it pays an even greater amount of
tax Tp = log1 —log 0.6 = log 1.67. Overall, user B gains net
utility 0.6, lower than it would have gained by telling the truth.

D. Analysis

We now analyze the properties of OpuS. It is straightforward
to show that OpuS provides isolation guarantee: in the worst
case, OpuS reduces to isolated caches to retain this property.

Theorem 4. OpuS provides isolation guarantee.

We next show that OpuS is immune to harmful manipulations,
in that no user can gain a higher utility at the expense of others
by lying about its caching preference. We emphasize that this
desirable property cannot be directly inferred from the well-
known fact that telling the truth is the dominant strategy in the
VCG mechanism. In fact, it is possible for a user to improve
its utility by cheating OpuS. However, we will show that this
can only benefit other users but not harm them, and hence such
behavior should be allowed.

Theorem 5. OpusS is strategy-proof.

Proof: We consider user i. Let a be the allocation given
by OpuS when user ¢ truthfully reports its caching preferences.
Now assume that user ¢ misreports, and the resulting allocation
changes to a’. We show that user 7 can gain a higher utility
by lying only if it benefits other users. We consider the
following four cases, depending on if allocations a and a’
are PF allocations given by the VCG mechanism of OpuS.

Case-I: Both a and a’ are PF allocations given by the VCG
mechanism. Based on (3) and (4), we derive the net utility that
user ¢ gains in allocation a by telling the truth as:

UPet(a) = exp (Zk log Uk (a) — Ek# log Uk(aii)). 7

Here, a* ; denotes the PF allocation without user 4’s participa-
tion, i.e., allocation a* ; is obtained by solving (2) as if user ¢
were absent. Similarly, the net utility user ¢ gains by lying is

Upt(a’) = exp (2 log Uk(a') — 324 4, log Un(aZ,)). (8)

We now show that user ¢ gains a higher net utility by
telling the truth, i.e., UP**(a) > UP°*(a’). This is equivalent
to proving Y, logUx(a) > >, logUi(a’), which is indeed
the case as allocation a is PF allocation for truthful users, and
it maximizes the social welfare assuming logarithm utilities.

Case-1I: Both a and a’ reduce to isolated caches. In this
case, no user’s (net) utility is changed if user ¢ cheats.

Case-III: Allocation a’ reduces to isolated caches, but
allocation a does not. In this case, OpusS settles on PF allocation

Alluxio Master

AccessRequest AccessRequest
Alluxio Client |_ | OpuS Master |~ | Alluxio Client

Ac¢cessDelay — 3
OpuS Meta

Alluxio Worker ‘ ‘

AccessDelay

Alluxio Worker

Fig. 4: Architecture of OpuS in Alluxio. The shaded boxes
highlight our implementations.

a given by the VCG mechanism with isolation guarantee when
user ¢ tells the truth. Therefore, user ¢ is better off being honest
than cheating.

Case-1V: Allocation a reduces to isolated cache, but a’ does
not. In this case, the cheating of user ¢ benefits all users. It
promotes isolated allocation a to PF allocation a’ given by the
VCG mechanism with isolation guarantee. No user becomes
worse off due to cheating.

In summary, we show in all the four cases that no user can
gain more utility at the expense of other users by cheating. W

V. IMPLEMENTATION

We have implemented OpuS as a pluggable cache manager
in Alluxio [3], [14]. Our implementation is open-sourced
for public access.’ In this section, we briefly describe our
implementation and its overhead.

A. Implementation

Alluxio: Alluxio [3], [14] is a memory-centric distributed
filesystem enabling in-memory data sharing between different
parallel frameworks (e.g., Spark and Hadoop) and their applica-
tions. Similar to HDFS, Alluxio stores files in Workers and uses
a single Master to manage metadata (e.g., file permissions).
The Master maintains a global view of cached files in the
cluster and communicates with Workers when necessary.

OpuS Architecture: Fig. 4 gives an overview of our OpuS
implementations atop Alluxio. The OpuSMaster implements
the main cache allocation logic of Algorithm 1 and is launched
along with the Alluxio Master.

Workflow: Upon the registration of an application,
OpuSMaster assigns it an OpuS client ID. Instead of
asking the application to report its caching preferences,
OpuSMaster maintains a file access history for the application
in the OpuSMeta library, from which it tallies up the file access
frequency and uses it as the caching preference of that file. To
cope with the changing file popularities, OpuSMaster collects
the file access frequency within a learning window and runs
Algorithm 1 periodically to enforce fair cache allocation

3Open-source in GitHub: https:/github.com/yhust/Alluixo-for-Opus$.git



between clients. The updating rate and the learning window
can be tuned at runtime in accordance with the access patterns.

When Algorithm 1 settles on cache sharing through PF
allocation, OpuSMaster notifies Workers to cache the corre-
sponding files through CacheUpdate messages. Later when
it receives a file access request from a client, OpuSMaster
artificially injects an access delay to emulate the effect of
the VCG tax charging by means of probabilistic blocking.
The injected delay should be set as the expected latency a
user would experience when the system employs probabilistic
blocking. Therefore, the expected delay is calculated as f;7y,
where Ty is the pre-measured latency for reading a file from
disk and f; is the blocking probability of user i as specified
in Eq. (5).

In case that the allocation reduces to isolation, OpuSMaster
emulates isolated caches for individual clients. Specifically, to
avoid frequent in-memory replication, the system maintains
a single copy of a cached file, even if the file should have
been kept by multiple clients in isolated caches. For each file,
OpuSMaster tracks which clients should have kept it in their
isolated caches: access to the file from the other clients are
fully blocked.

B. Discussions

Overhead: We attribute the main source of overhead in our
implementation to the calculation of the VCG tax: with N
users, the system needs to solve N + 1 convex optimization
problems in the form of (2). Our implementation employs
CVXPY [25], a python package for convex optimization. We
have not encountered any performance issue: the computation
of cache allocation completes within three seconds in a wide
range of parameter settings (cf. Sec. VI-C). In fact, the runtime
of Algorithm 1 grows very slowly with the number of users.

Non-stationary file popularity: OpuS employs a sliding
window to adjust to the non-stationary file popularities in real
clusters. The length of the time window should be dynamically
tuned to capture variations in access patterns. We leave this
dynamic learning for future explorations and fix the time
window as 20 minutes in the current implementation. Cache
contents are updated every 20 minutes based on the access
history in the past time window. A relatively long update
interval keeps the implementation overhead at a low level,
but might sacrifice cache efficiency (and even fairness) if
the data popularity changes dramatically during the intervals.
Fortunately, observations in production data analytics clusters
[26] show that data popularity exhibits gradual ascent and
decline on an hourly basis. Therefore, with an update rate of
three times per hour, OpuS can well adjust to the changing
file popularities.

Expected delay with varying file size: Recall that we enforce
expected delay to emulate the effect of probabilistic blocking,
where the access latency of disk I/O, denoted as T}, should be
pre-measured. For files of unit size, T can be easily estimated
by a couple of sampling reads. In the scenario with varying
file sizes, we instead benchmark the disk I/O bandwidth BW

and enforce the expected delay to be Ty = fs;../BW, with
fsize denoting the file size. In this way, we can conveniently
calculate the equivalent delay of disk I/O for all files.

VI. EVALUATION

We evaluate the performance of OpuS using experiments on
EC2 clusters through micro- and macro-benchmarks. For larger
scale evaluation, we use trace-driven simulations by feeding
synthetic workloads. Our evaluation highlights are:

e OpuS eliminates the incentive of cheating, while LRU
and FairRide fall short of this property (Sec. VI-A).

o OpuS outperforms isolated caches by 2.45x and is 16.6%
better than FairRide [9] in terms of cache hit ratio. In fact,
OpuS comes close to the global optimum with a narrow
gap less than 7% (Sec. VI-B).

e OpuS determines cache allocations in three seconds on
average for up to 150 users and hence is scalable to large
clusters with many users sharing the caches (Sec. VI-C).

Setup: Our implementations are based on Alluxio 1.5.0. We
have respectively deployed a 5-node and a 10-node EC2 cluster
for micro- and macro-benchmark experiments. Our experiments
use m4.large instances [27], each with a dual-core 2.4 GHz
processor and 8 GB memory.

Workload: We use TPC-H queries [28] as the experiment
workload for data analytics. This benchmark is a set of decision
support queries, including a suite of business-oriented ad-hoc
queries with broad industry-wide relevance. We have generated
over 200 TPC-H datasets, each of 100 MB. Each dataset
contains 8 tables storing contents such as customer information
and inventory records. The size of a TPC-H table varies from
2 KB to 70 MB.

File popularity: Unless otherwise specified, we assume that
user’s file preferences follow the Zipf distribution, which is
in line with the skewed data access patterns observed in
production clusters [29], [30]. Due to the lack of traces in
production clusters, we consider a short period while the file
popularity remains stationary. Nonetheless, this assumption
is supported by two facts. First, the data popularity does not
change dramatically within a short time in production clusters
[26]. Second, our evaluations in Sec. VI-C show that OpuS can
update the cache allocation within three seconds in a wide range
of parameter settings. Therefore, we focus on the performance
study in a snapshot with stable file popularities.

Metric: We use the effective hit ratio as our main metric.
Recall that our implementation emulates probabilistic blocking
through delayed access. Therefore, the actual access latency is
in proportion to the blocking probability. In our experiments,
we count a delayed access as a fractional cache miss, where
the fraction equals the blocking probability. We then tally up
the total cache misses to compute the effective hit ratio for
each user, with which we can easily compare the efficacy of
OpuS with other schemes.
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A. Strategy-proofness

We start with micro-benchmark experiments to demonstrate
how OpuS prevents users from cheating, whereas LRU and
FairRide fail to provide such a guarantee.

LRU: By default, Alluxio uses the LRU policy to evict cached
files, which allows strategic users to get more of their preferred
files cached through spurious access. To demonstrate this
problem, we consider two users accessing six TPC-H datasets.
User 1 starts to triple its access rate after the 200" access.
The total cache volume is configured to 300 MB. We run
experiments using LRU and OpusS, respectively, and measure
the effective cache hit ratio for both users. As shown in Fig. 5a,
with LRU, user 1 manages to increase its hit ratio through
spurious file access, which forces user 2 to give up caches
with a dramatic drop in the hit ratio. This is not possible with
OpuS. As depicted in Fig. 5b, user 1 can only hurt itself by
cheating, while user 2 gets isolated with a stable hit ratio.

FairRide: We next illustrate that FairRide suffers from a similar
problem in that users can carefully calculate the benefit-cost-
ratio and misreport their cache preferences to free-ride on others.
We run the experiment based on the previous example in Fig. 3,
with four users caching three TPC-H datasets. User B starts to
cheat after the 200" access, accessing file F; more frequently
than F». We compare FairRide against OpuS. As shown in
Fig. 6a, user B successfully gamed FairRide to increase its
hit ratio by free-riding user D, who has witnessed a dramatic
drop in performance. In contrast, we show in Fig. 6b that with
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Fig. 7: [Cluster] Macro-benchmark evaluations. (a) The distri-
bution of effective hit ratio. (b) The distribution of normalized
net utility (after-tax normalized by before-tax).

OpuS, user B can only get worse off when cheating.

B. Cache Efficiency

We next evaluate the cache efficiency of OpuS using both
macro-benchmark experiments and trace-driven simulations.

Macro-benchmark Experiment: We configure 20 users to
randomly query 60 TPC-H datasets stored in a 10-node EC2
cluster. The file caching preferences of each user are generated
following the Zipf distribution, with an exponent parameter of
1.1. The system cache volume is set to 5 GB.

We compare the cache performance of OpuS against FairRide
and isolation. For each policy, we measure the effective hit
ratio for each user over 20K data accesses and depict the CDF
in Fig. 7a. OpuS outperforms the other two alternatives by a
significant margin, with the highest average hit ratio as 90.3%.
This is 2.45x of isolation (36.8%) and 16.6% higher than
FairRide (77.4%). We attribute OpuS’s superior performance
to two determining factors: the high efficiency of PF allocations
and the extremely low VCG tax charged to each user. Notice
that the VCG tax, enforced through probabilistic blocking,
is the key to guarantee strategy-proofness in OpuS. In our
experiment, we observe that the VCG tax enforced by OpuS
is in general quite light, i.e., OpuS delays the file access
very slightly. Fig. 7b shows the CDF of the net utility (after-
tax) normalized by the original utility the user gains from PF
allocations without tax payment. From the CDF curve, more
than 90% of the original utility is guaranteed at almost all
times, and over half of the time, the net utility is more than
97%, i.e., the artificially enforced delay of OpuS is less than
3%.

Simulations: We resort to simulations for larger scale evalua-
tions. We synthesize the data access patterns based on the traces
in macro-benchmark experiments. We generate more than 5K
different preference distributions for each user to repeat the
simulations and plot the averaged results.

We first study the performance of OpuS with a varying
number of users, ranging from 50 to 150. We generate 100 TPC-
H datasets and configure the system cache capacity to 6 GB.
Fig. 8 compares the average effective hit ratio measured across
users using OpuS, FairRide, isolation, and the optimal LFU
policy which optimizes the global hit ratio without any fairness
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concern, considering stationary file popularity. Throughout
our experiments, OpuS consistently outperforms FairRide and
isolation, and comes close to the global optimum within 7%.
Except for isolation, all the other three policies enable cache
sharing. The result is stable hit ratios for individual users
irrespective of the number of competitors sharing caches.

We next evaluate an alternative way of performing oppor-
tunistic cache sharing using the classic VCG mechanism (cf.
Sec. IV-B). We generate 30 users querying TPC-H datasets
of varying sizes from 10 GB to 20 GB. Fig. 9 compares
the chances of settling on sharing using the classic VCG
mechanism and OpuS. In most cases, OpuS has over 90%
of chances to allow users to share caches. In contrast, with
the classic VCG mechanism, the chance drops quickly to less
than 40% with a large input data size. Thus, using the classic
VCG mechanism to perform opportunistic cache sharing has a
high risk to reduce to isolation, with low cache utilization.

C. Overhead

We evaluate the overhead of our prototype implementation
in Alluxio in a 5-node EC2 cluster. We measure the time OpuS
takes to compute a cache allocation (Algorithm 1) with a
varying number of users. We generate 6 GB of TPC-H datasets
and configure the cache capacity to 3 GB. We measure the
computation time in the master node with up to 150 users.
Fig. 10 shows the boxplot of the results in 100 trials. With
more users sharing the cache, the configuration time for the
cache allocation linearly increases. Nevertheless, even with 150
users, it takes OpuS approximately 3 seconds to configure the
allocation. Recall that the cache allocation is updated every 20
minutes. OpuS can timely react to the changing file popularities.
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Fig. 10: [Cluster] The time to compute an allocation with up
to 150 users. Boxes depict the 25", 50", and 75" percentiles.
Whiskers depict the 5" and 95" percentiles.

VII. RELATED WORK

Fair Resource Allocation: Policies for fair resource sharing
have been extensively studied in multi-tenant systems for
allocating CPU cycles and network bandwidth [15], [19], [20],
[31]. However, unlike these resources, memory caches have a
defining characteristic of being non-exclusively sharable across
multiple users. This poses a unique challenge of free-riding
manipulation that cannot be effectively prevented by traditional
fair sharing policies.

Fair Cache Sharing: Among the few available policies
designed for allocating memory caches, ROBUS [21] resorts
to cooperative game theory and searches for cache allocations
lying in the core. However, computing the core allocations not
only incurs a heavy overhead but also invites strategic behaviors.
To our knowledge, FairRide [9] is the only cache allocation
policy that settles for eliminating free-riding manipulations.
However, as shown in Fig. 3, a user can still game the system
to improve its cache performance at the expense of others.

Sharing Public Goods: In the context of economics, caches
can be viewed as a public good that is non-exclusively shared by
many users. While the economic literature has developed many
allocation mechanisms to enforce truthful sharing for public
goods [12], [23], [32], these mechanisms seek to optimize the
global social welfare but fail to provide the isolation guarantee.
The design of OpuS learns from these mechanisms, but goes
beyond and ensures isolation with a minimum efficiency loss.

VIII. CONCLUSIONS

In this paper, we have studied the problem of fair cache
allocation for in-memory data analytics. We have shown that
existing cache allocation policies either suffer from free-riding
manipulations or result in poor cache utilization. We have
proposed a new fair cache allocation scheme called OpuS, and
demonstrated that OpuS guarantees isolation and is immune
to manipulations. These two desirable properties come at a
slight loss in the global cache efficiency. We have implemented
OpuS in Alluxio as a pluggable cache manager. Evaluation
results show that OpuS effectively eliminates the incentives
of cheating and significantly outperforms the state-of-the-art
solutions, achieving a performance within 7% of the global
optimum.
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