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Long-Running Applications (LRAs) are critical in modern datacenters

+ Also known as latency-critic (LC) services which are of commercial value, e.g.,

« Stream processing @
- Interactive data analytics < >
. Caching/Storage services . g M

* LRAs usually run for hours to months and occupy substantial resources.
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LRASs are non-trivial to schedule

* LRAs have stringent SLO (Service-Level Objective) requirements.

* LRAs have sophisticated performance interactions among themselves.
- 1/O dependencies — affinity: better co-located
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LRAs are non-trivial to schedule

* LRAs have stringent SLO (Service-Level Objective) requirements.

LRAs have sophisticated performance interactions among themselves.
- 1/O dependencies — affinity: better co-located

- Shared resources contention — anti-affinity: better scattered
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Metis: Learning-based LRA scheduler

Pursue LRAS’ best end-
to-end performance of
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Directly learn LRAS’
interactions from traces,
instead of prior knowledge.

100%
92.5%
85%
ahasn
77.5%

Scale to thousands of nodes
within moderate latency.
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Prior Arts: Constraint-Based Schedulers
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Garefalakis, Panagiotis, et al. "Medea: scheduling of long running applications in shared production clusters." Proceedings of the Thirteenth EuroSys Conference. 2018.



Prior Arts: Constraint-Based Schedulers

Problems:

l.
2.

Expensive to get constraints.

Inefficient at scale
(>10 hours to place 3,000
containers to 700 machines).

Suboptimal. Constraints are
quadlitative, but not quantitative.

Esp. given conflicting constraints.

Violate 4 constraints Violate 6 constraints
0.93 RPS 1.16 RPS
Medea (constraint-based) Metis (learning-based)
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Metis: Make end-to-end scheduling by Reinforcement Learning

|. Group container requests.

Container Allocation Requests

| i 2 [
2. Train an RL agent for each group. Metis //'.@E- B— \
3. Collect placement decisions Cluster Environment Container Launcher
) ’ ] Simulator A

4. Launch containers in cluster. v® Performance Profiler I
( RL Agent \@

5. Profile containers’ performance. |i | [LRA NodeStates || : 5t ¥
i : LRA

6. Improve RL env. simulator. C'uster!l !

Nodes -
Implementation &

 Algorithms, baselines, and benchmarks (in Docker) are available at
https://github.com/Metis-RL-based-container-sche/Metis



https://github.com/Metis-RL-based-container-sche/Metis

Metis: Training dedicated RL agents on the spot

Trades computation and latency for better performance.
Offline-trained agent performs badly, because the input are highly variant:
 Cluster state changes after each deployment.

* Input container group can have millions of combinations, e.g.,
Picking 30 containers from 7 apps (with repetition) gives ~2 million outcomes.
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Hierarchical Reinforcement Learning

 Co-locating containers using Reinforcement Learning
- End-to-end scheduling process
- Intelligent interference-capture method: try-trail
- Generally support various scheduling objectives
- Scalable

— Cluster Environment
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Hierarchical Reinforcement Learning

- Novelty: Hierarchical Reinforcement Learning for Scalability

- Cluster scale: thousands of machines
- Large action and state space: poor performance

=« = = Vanilla RL
=== Divide & Conquer
= Metis
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Hierarchical Reinforcement Learning

- Novelty: Hierarchical Reinforcement Learning for Scalability
- Select a hosting machine: select a sub-cluster first
- Reduced state and action space
- Reusable building blocks (Spatial)
. Offline vs Online
me,T

- Sub-scheduler - Candidates — I
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Evaluation: Setup

Prototype deployment on a EC2 clusters
Scale: a medium one with 81 nodes and a large one with 729 nodes.
Each node: m5.4xlarge instance with 16 vCPUs, 64 GB memory
Docker containers: each with 2 vCPUs and 8 GB memory.

Metrics
Container performance: RPS
Cluster resource fragmentation: % of empty nodes

Baselines
Medea
Paragon
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Evaluation: Scheduling Performance
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25% and 61% higher RPS
than Medea and Paragon

Modest scheduling latency
within 10 min
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Evaluation: Scheduling Scalability

_______ e - Large-scale experiments
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Evaluation: Support of Various Scheduling Objectives
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- Maximizing SLO Satisfactions

Outperforming Medea and

Paragon by 1.6x and 4.4x on
average

- Minimizing Resource Fragmentation

Reward: weighted sum of RPS and
vacant machines

Smooth trade-off between the two
objectives
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