
Metis: Learning to Schedule Long-
Running Applications in Shared
Container Clusters at Scale

Luping Wang*, Qizhen Weng*, Wei Wang, Chen Chen, Bo Li
Hong Kong University of Science and Technology

• Also known as latency-critic (LC) services, which are of commercial value, e.g.,
• Stream processing

• Interactive data analytics
• Caching/Storage services …

• LRAs usually run for hours to months and occupy substantial resources.

Alibaba: Microsoft: Google:

Long-Running Applications (LRAs) are critical in modern datacenters

Reiss, Charles, et al. "Heterogeneity and dynamicity of clouds at scale: Google trace analysis." Proceedings of the Third ACM Symposium on Cloud Computing. 2012.
Garefalakis, Panagiotis, et al. "Medea: scheduling of long running applications in shared production clusters." Proceedings of the Thirteenth EuroSys Conference. 2018.
“Alibaba production cluster data,” https://github.com/alibaba/clusterdata. 2

94% 37% LRA-dedicated
machine/clusters

High proportion of
long production Jobs.

LRAs are non-trivial to schedule

• LRAs have stringent SLO (Service-Level Objective) requirements.
• LRAs have sophisticated performance interactions among themselves.

• I/O dependencies — affinity: better co-located

3

Image Super Resolution with TensorFlow.

MXNet Model Server, classifying images.

Send Images

LRAs are non-trivial to schedule

• LRAs have stringent SLO (Service-Level Objective) requirements.
• LRAs have sophisticated performance interactions among themselves.

• I/O dependencies — affinity: better co-located
• Shared resources contention — anti-affinity: better scattered

4

File Checksum • CPU last-level cache
• Memory bandwidth
• Network and disk I/O …

Video Scene Detection

Yahoo!
Cloud

Serving
Benchmark
(Workload

A and B)

• Pursue LRAs’ best end-
to-end performance of
various metrics.

• Directly learn LRAs’
interactions from traces,
instead of prior knowledge.

• Scale to thousands of nodes
within moderate latency.

Metis: Learning-based LRA scheduler

5

• Introduction

• Prior Arts and Metis’ Approach

• Hierarchical Reinforcement Learning

• Evaluation

Outline

6

Medea scheduler workflow:
(0. Cluster operators identify interactions.)
1. Manually set placement constraints.
2. Solve Integer linear program (ILP).
3. Executes ILP solution.

Prior Arts: Constraint-Based Schedulers

7Garefalakis, Panagiotis, et al. "Medea: scheduling of long running applications in shared production clusters." Proceedings of the Thirteenth EuroSys Conference. 2018.

Problems:
1. Expensive to get constraints.
2. Inefficient at scale

(>10 hours to place 3,000
containers to 700 machines).

3. Suboptimal. Constraints are
qualitative, but not quantitative.
Esp. given conflicting constraints.

Prior Arts: Constraint-Based Schedulers

8

+147%
by memcache

-13% by extra workloads

Violate 4 constraints
0.93 RPS

Violate 6 constraints
1.16 RPS

1. Group container requests.
2. Train an RL agent for each group.
3. Collect placement decisions.
4. Launch containers in cluster.
5. Profile containers’ performance.
6. Improve RL env. simulator.

Implementation

• Algorithms, baselines, and benchmarks (in Docker) are available at
https://github.com/Metis-RL-based-container-sche/Metis

Metis: Make end-to-end scheduling by Reinforcement Learning

9

https://github.com/Metis-RL-based-container-sche/Metis

Trades computation and latency for better performance.
Offline-trained agent performs badly, because the input are highly variant:
• Cluster state changes after each deployment.
• Input container group can have millions of combinations, e.g.,

Picking 30 containers from 7 apps (with repetition) gives ~2 million outcomes.

Metis: Training dedicated RL agents on the spot

11

• Introduction

• Prior Arts and Metis’ Approach

• Hierarchical Reinforcement Learning

• Evaluation

Outline

12

• Co-locating containers using Reinforcement Learning
• End-to-end scheduling process
• Intelligent interference-capture method: try-trail
• Generally support various scheduling objectives
• Scalable

Hierarchical Reinforcement Learning

13

• Novelty: Hierarchical Reinforcement Learning for Scalability
• Cluster scale: thousands of machines
• Large action and state space: poor performance

Hierarchical Reinforcement Learning

14

• Novelty: Hierarchical Reinforcement Learning for Scalability
• Select a hosting machine: select a sub-cluster first
• Reduced state and action space
• Reusable building blocks (Spatial)
• Offline vs Online

Hierarchical Reinforcement Learning

15

• Introduction

• Prior Arts and Metis’ Approach

• Hierarchical Reinforcement Learning

• Evaluation

Outline

16

• Prototype deployment on a EC2 clusters
• Scale: a medium one with 81 nodes and a large one with 729 nodes.
• Each node: m5.4xlarge instance with 16 vCPUs, 64 GB memory
• Docker containers: each with 2 vCPUs and 8 GB memory.

• Metrics
• Container performance: RPS
• Cluster resource fragmentation: % of empty nodes

• Baselines
• Medea
• Paragon

Evaluation: Setup

17

• 81-node cluster
• 200-400 containers
• 25% and 61% higher RPS

than Medea and Paragon
• Modest scheduling latency

within 10 min

Evaluation: Scheduling Performance

18

• Large-scale experiments
• 729-node, 1k-3k containers
• Comparable performance to

that in previous 81-node
clusters

• Timely scheduling within 1 hour

Evaluation: Scheduling Scalability

19

• Sub-scheduler design
• Accelerates RL convergence by

40×–95×
• less than 10% loss of RPS

• Maximizing SLO Satisfactions
• Outperforming Medea and

Paragon by 1.6× and 4.4× on
average

Evaluation: Support of Various Scheduling Objectives

20

• Minimizing Resource Fragmentation
• Reward: weighted sum of RPS and

vacant machines
• Smooth trade-off between the two

objectives

