rsc20

Everywhere | more
we dre |than hpc.

Metis: Learning to Schedule Long-

Running Applications in Shared
Container Clusters at Scale

Luping Wang*, Qizhen Weng*, Wei Wang, Chen
Hong Kong University of Science and Technology,

Long-Running Applications (LRAs) are critical in modern datacenters

+ Also known as latency-critic (LC) services which are of commercial value, e.g.,

« Stream processing @
- Interactive data analytics < >
. Caching/Storage services . g M

* LRAs usually run for hours to months and occupy substantial resources.

g =) S oo .
Alibaba: 9(=|B Microsoft: o) Google: L _ 2
adl®=l b ——
qQ--p (B O]
= = " ,
94% 37% LRA-dedicated High proportion of
machine/clusters long production Jobs.

Reiss, Charles, et al. "Heterogeneity and dynamicity of clouds at scale: Google trace analysis." Proceedings of the Third ACM Symposium on Cloud Computing. 2012.
Garefalakis, Panagiotis, et al. "Medea: scheduling of long running applications in shared production clusters." Proceedings of the Thirteenth EuroSys Conference. 2018.
“Alibaba production cluster data,” https://github.com/alibaba/clusterdata.

LRASs are non-trivial to schedule

* LRAs have stringent SLO (Service-Level Objective) requirements.

* LRAs have sophisticated performance interactions among themselves.
- 1/O dependencies — affinity: better co-located

Redis 5 ISR | Image Super Resolution with TensorFlow.

=P Affinity MMS | V| XNet Model Server, classifying images.

LRAs are non-trivial to schedule

* LRAs have stringent SLO (Service-Level Objective) requirements.

LRAs have sophisticated performance interactions among themselves.
- 1/O dependencies — affinity: better co-located

- Shared resources contention — anti-affinity: better scattered

File Checksum « CPU last-level cache
= = = » Anti-affinity | cxm ° Memor)’ bandW|dth
=P Affinity 5 - Network and disk I/O ...

Py \4
Yahoo! ® YCSB-A|€ = = | Redis @ "' ISR
Cloud -

Serving 4 ‘;»’ ’ - e
Benchmark \ A AV \‘
(Workload vcse-B|€ = =p| ScD MMS

Aand B) »* ®
' 4 ‘9

Video Scene Detection

Metis: Learning-based LRA scheduler

Pursue LRAS’ best end-
to-end performance of

_) LRA Containers Scheduler LRA Cluster Nodes Metrics
various metrics. Launch Requests ﬂdw NodeN

‘ [R
Container Group of m

.
(- B
N

Queue

Directly learn LRAS’
interactions from traces,
instead of prior knowledge.

100%
92.5%
85%
ahasn
77.5%

Scale to thousands of nodes
within moderate latency.

Outline

Introduction

Prior Arts and Metis’ Approach

Hierarchical Reinforcement Learning

Evaluation

Prior Arts: Constraint-Based Schedulers

: . - N
Medea scheduler workflow: masimize 35,4 22§ g w0 S
. m _ —
(0. Cluster operators identify interactions.) - N n=1
subject to: L)
|. Manually set placement constraints. Vi, ;Xun <1
. -
2. Solve Integer linear program (ILP). 3 S Xom < KL
3. Executes ILP solution. Nl =
Vi ZZXU‘" TlSl =0
n=1 j=1
kK T;
M erll Xl]" Bu(1-2z,) < Ry, — Tmin
i=1 j=1

Garefalakis, Panagiotis, et al. "Medea: scheduling of long running applications in shared production clusters." Proceedings of the Thirteenth EuroSys Conference. 2018.

Prior Arts: Constraint-Based Schedulers

Problems:

l.
2.

Expensive to get constraints.

Inefficient at scale
(>10 hours to place 3,000
containers to 700 machines).

Suboptimal. Constraints are
quadlitative, but not quantitative.

Esp. given conflicting constraints.

Violate 4 constraints Violate 6 constraints
0.93 RPS 1.16 RPS
Medea (constraint-based) Metis (learning-based)

YCS @ YCS
@ 4 |MMS MMS (MMS ISR 4 B-A \
\I;cg ;Cg 2 ﬁmms ISR

7l Redis. ScD

Ycs
3 | ISR ISR G CKM ScD -y 3 BA
& LRA Cluster Nodes / LRA Cluster Nodes j
. * LB B
Redis ' ISR
w

~

\113% by extra workloads
+147%

by memcache MMS

Metis: Make end-to-end scheduling by Reinforcement Learning

|. Group container requests.

Container Allocation Requests

| i 2 [
2. Train an RL agent for each group. Metis //'.@E- B— \
3. Collect placement decisions Cluster Environment Container Launcher
) ’] Simulator A

4. Launch containers in cluster. v® Performance Profiler I
(RL Agent \@

5. Profile containers’ performance. |i | [LRA NodeStates || : 5t ¥
i : LRA

6. Improve RL env. simulator. C'uster!l !

Nodes -
Implementation &

 Algorithms, baselines, and benchmarks (in Docker) are available at
https://github.com/Metis-RL-based-container-sche/Metis

https://github.com/Metis-RL-based-container-sche/Metis

Metis: Training dedicated RL agents on the spot

Trades computation and latency for better performance.
Offline-trained agent performs badly, because the input are highly variant:
 Cluster state changes after each deployment.

* Input container group can have millions of combinations, e.g.,
Picking 30 containers from 7 apps (with repetition) gives ~2 million outcomes.

VI, ! ‘1,

?? Q: - @: @:

= 917

i °2° = IQI m

(=1l O =1

s ol Bl 2 N

11

Outline

Introduction

Prior Arts and Metis’ Approach

Hierarchical Reinforcement Learning

Evaluation

12

Hierarchical Reinforcement Learning

 Co-locating containers using Reinforcement Learning
- End-to-end scheduling process
- Intelligent interference-capture method: try-trail
- Generally support various scheduling objectives
- Scalable

— Cluster Environment

\J
K.RA embedding ,»:,, te vectors

Action Reward

13

Hierarchical Reinforcement Learning

- Novelty: Hierarchical Reinforcement Learning for Scalability

- Cluster scale: thousands of machines
- Large action and state space: poor performance

=« = = Vanilla RL
=== Divide & Conquer
= Metis

10 20 30 40 50 60
Training time (minutes)

14

Hierarchical Reinforcement Learning

- Novelty: Hierarchical Reinforcement Learning for Scalability
- Select a hosting machine: select a sub-cluster first
- Reduced state and action space
- Reusable building blocks (Spatial)
. Offline vs Online
me,T

- Sub-scheduler - Candidates — I
L1 sub-clusters | [N [)L]

ao'0 o a_a%0 o
L2 RL Agents TEED TEoP TG oD

(Pre-trained)

L2 sub-clusters
L3 RL Agents L0080 2,00 0.8, 0

(Pre-trained)

L3 sub-clusters

15

Outline

* Introduction
* Prior Arts and Metis’ Approach
* Hierarchical Reinforcement Learning

 Evaluation

16

Evaluation: Setup

Prototype deployment on a EC2 clusters
Scale: a medium one with 81 nodes and a large one with 729 nodes.
Each node: m5.4xlarge instance with 16 vCPUs, 64 GB memory
Docker containers: each with 2 vCPUs and 8 GB memory.

Metrics
Container performance: RPS
Cluster resource fragmentation: % of empty nodes

Baselines
Medea
Paragon

17

Evaluation: Scheduling Performance

1.3
Metis
1.2| T I Medea
T I Paragon
n L1+ T]
a =
« 1.0 I
o
209 *F L 3
0.8
0.7 + T+ +
200 300 400

of containers to be placed

(a) Average RPS with various con-

tainer group sizes.

1.0
-"Paragon Metis r Medea,’

0.8)

0.6

CDF

0.4

!
!
!
|
!
!
0.2 |
l

]
I
)
f I
I
J
1

101 10 10! 104
Scheduling latency (minutes)

0.0

(b) Distribution of scheduling la-
tency in all container groups.

81-node cluster
200-400 containers

25% and 61% higher RPS
than Medea and Paragon

Modest scheduling latency
within 10 min

18

Evaluation: Scheduling Scalability

_______ e - Large-scale experiments

o T T Fcbaton: £ %3 E? « 729-node, 1k-3k containers

ool f S e 23 a0

H # of containers | S E H - Comparable performance to
w— 1000 2 30 . .

ot I that in previous 81-node
. 0 10 20 30 40 50 60 1(;;)0 2000 3000 ClUSterS
Training time (minutes) # of containers to be placed
(a) Learning curve of the RL Agent. (b) Scheduling latency. ° T|me|y SChed u | | ng W|th|n 1 hou r

1.0 ;
0.8/ =+ 81-node cluster)
L (0.6 === 729-node cluster . .
S 04 » Sub-scheduler design
05750 60 70 80 90 100 - Accelerates RL convergence by
Lo Training speedup 40)(—95)(
0.8
5 04 + less than 10% loss of RPS
0.2
07" 56 7 8 9 10 13

RPS loss (%)

Evaluation: Support of Various Scheduling Objectives

100

SLO Sat. (%)

Avg. RPS

free node (%)

80

60

40

20

Metis
T I Medea
T I Paragon

L
T,

=
N

=y
=

=
o

o
©

30
25
20
15
10

0.90 0.95 1.00
SLO of RPS

%L.\.%\E_ﬁ"ﬂ%_.,%

0.0 0.5 1.0 1.5

’%---i'"%’

”
.
=

0.0 0.5 1.0 1.5 2.0
Global objective weight knob f8

- Maximizing SLO Satisfactions

Outperforming Medea and

Paragon by 1.6x and 4.4x on
average

- Minimizing Resource Fragmentation

Reward: weighted sum of RPS and
vacant machines

Smooth trade-off between the two
objectives

20

