ACM Symposium
on Cloud Computing

Workload Consolidation in Alibaba Clusters
The Good, the Bad, and the Ugly

Yongkang Zhang™, Yinghao Yu*, We|Wang Qiukai Chen*, Jie Wu* Zuowe|Zhang JlangZhon T|anchen Ding*, Qizhen Weng™,
LlngyunYang ChengWang Jian He” GuodongYang Liping Z ang

"Hong Kong University of Science and Technology *Alibaba Group

& FZHEBFEAE
I THE HONG KONG UNIVERSITY OF QAI ibaba Grou P

SCIENCE AND TECHNOLOGY PP E A




Table of Contents

* Background
* Cluster-wide Macro-management
* Node-level Micro-management

* Handling Seasonal Shopping Festivals: A Case Study
* Conclusion




Background



Alibaba’s E-commerce Businesses

* Alibaba is one of the largest IT giants in the world......

FER) COl g mmm

ﬁ1,
Taobao.com N O 7ie I:

THMALL YOUKU @ Lazada

. AIibaba’s businesses are developed on a wide range of technology stacks.

& €spring oy
Java o pUthOﬂ @ m

Images credit to Wikipedia: https://www.wikipedia.org/



https://www.wikipedia.org/

Alibaba’s Workload Management
System

* The scale of Alibaba’s clusters:
large clusters.
machines in each cluster.
machines in total.
CPU cores and of GPUs.
service instances.

* Two types of workloads:
* Long-running, latency-critical (LC)
* Throughput-oriented



Design Principles

* Objectives
* Reduce the resource provisioning cost without violating the
Service-level Objectives (SLOs) of applications.

* Transparent to applications.

* Generally applicable to a range of services and frameworks.



Cluster-wide Macro-Management



The Problem of Overcommitment

* Diurnally changing LC services.
* The diurnal pattern of CPU & GPU utilization
creates opportunities for overcommitment.

 Host and GPU memory limit the
overcommitment at night.

* The memory bottleneck.

e Unlike CPUs and GPUs, the host and GPU
memory footprints of LC services stay
relatively stable.

Application ID

100

50

Application ID

» GPU Memory

e Batch iob t The memory utilization of 100
atcn Jobs request more memory...... LC services (usage | request, %).

* Aggravates this problem. ;



Memory Reclamation

* Tracking memory idleness.
* Following Google’s kstaled [, we
added kidled 2!into the Linux

kernel to periodically mark the age of
reclaimable pages.

=

Llli[[ﬁT

!E!!L =

2>04 >1 >3 >6 >12 >21>48
Age Range of Pages (Hour)

* A large number of reclaimable idle Swappable anonymous pages

(0]
(e}

D
S

Percentage (%)
s &

(=]

I V

Percentage (%)

Age Range of Pages (Hour)
Clean file pages

pages exist in LC services. The distribution of (Reclaimable page / total
- Around half of swappable anonymous , memory usage) of LC services running on eech
pages have an age = 48 hrs. machine in a cluster by the age (last access time)

* Around half of clean file pages have an
age = 3 hrs.

[1] kstaled. https://lore.kernel.org/lkml/20110922161448.91a2e2b2.akpm@gooqgle.com/T/.
[2] kidled. https://github.com/alibaba/cloud-kernel/blob/linux-next/mm/kidled.c.

of memory pages.


https://lore.kernel.org/lkml/20110922161448.91a2e2b2.akpm@google.com/T/
https://github.com/alibaba/cloud-kernel/blob/linux-next/mm/kidled.c

Memory Reclamation

* Proactive memory reclamation.

* Reclaim pages with an longer than a threshold tuned by small-
scale experiments on representative LC services.

* Use memory pressure stall information (PSI) [*! to detect memory
pressure and evict batch jobs.

* Please refer to our paper for more details.

[1] Tracking pressure-stall information. https://lwn.net/Articles/759781/.



https://lwn.net/Articles/759781/

Memory Reclamation

. . 100 =

* Proactive memory reclamation. . A,
. & &
* Deployment results (median 50+ P
.y . 254 weETT <
utilization, %6): N -

« Anonymous pages: 74% -> 67% S 100 =
* File pages: 13% -> 4% BT %
>0 r_l’;..‘ —-—-—Before 2)
251 !.:l —-— After -

0 -r T T T .
0 25 50 75 100

Usage / Limit (%)
File / anonymous page utilization
before and after memory reclamation.
9



Memory Reclamation

* Proactive memory reclamation. N [
< B Ater |
* No significant impacts on LC 5o /
services in terms of: T
CPI
* CPI (cycles per instruction) [ > CPI (cycles per instruction)
: - 100 ———
* Average service response time < s === Befor
::/ 50_ "! ...... After
S 251 f
0 j I74 I72 I0
10 10 10
RT (Normalized)

» Average response time

Comparison of LC services’ performance
before and after memory reclamation.

10

[1] Zhang et al., CPI2: CPU performance isolation for shared compute clusters. In Proc. ACM EuroSys 2013.



Tidal Scaling

* Memory reclamation is insufficient.

* Cannot be applied to GPU memory.
* The resulting memory utilization still has no clear diurnal
pattern.
* Why not use vertical scaling / horizontal scaling?

* Fine-grained vertical scaling is insufficient.
* Horizontal scaling



Tidal Scaling

* Bimodal instance.
* Applied to LC services with diurnal traffics.

e Two states:
Instances: actively serve user requests and consume resources.
Instances: no running pI’OCESS and Fresource consumption.

* A bimodal instance can rapidly change its state by:
» Starting processes before the day’s traffic picks up.
o Do, >
* Terminating processes before the night arrives.

o« UH-> U ->



Tidal Scaling

* Evaluation.

* #0, 1: LCservices that only
consume CPUs.

LC services that consume
both CPUs and

* No significant variations in _, Service RT (normalized by each application’s
service response time (RT). daily average) when tidal scaling is enabled.

iy e

4 - - 1.5

8 - - 1.0

Application ID
@)}

0 4 8 12 16 20 24
Hour

13



Tidal Scaling

* Evaluation.

0 2
* #0, 2: LC services that only L El R e B
= 6 3 = B
consume CPUs. ER: 1. i I,
. _§ 0 § 2
» # 2-9: LC services that consume gﬁi '-; gg} H; .
6 S £
both CPUs and GPUs. s Sl B o
_ 0 4 8 12 16 20 24 0 4 8 12 16 20 24
* Create a diurnal pattern for host Hour Hour
Host memory utilization GPU memory utilization
& GPU memOl’Y- L> (usage / request, %) of LC (usage / request, %) of LC
services services

4

14



Tidal Scaling

* Evaluation.

* #0, 1: LCservices that only
consume CPUs.

* # 2-9: LC services that consume
both CPUs and GPUs.

Disabled
—_ o
(9, o

tion ID

1ca

.

Appl
[esYoNo) PN O JeNanYo o Ko )P NN O Nan)
1 1 1 1 1
|
-

N
Enabled
i

—_—

4 8 12 16 20 24

* Keep CPU & GPU utilization ~ Hour
I , CPU utilization (usage /
stable. request, %) of LC services

2

4_ 8 40
N 6- =
= 3. 230
c )
glo-l | |
o 2 20
= 4 z
< 6 <(r10

g c

m
10 0

8 12 16 20 24
Hour

GPU utilization (usage /
request, %) of LC services

|

(e
-

15



Node-level Micro-management



CPU Jitters

* Alibaba’s applications have tiny CPU load spikes......

—-— Used Cores (50ms Granularity)
—-==- Used Cores (1s Granularity)
— Limit

f Cores

Second

The CPU usage trace of a CPU-bursty LC service in
different time scales.

17



CPU Jitters

* CFS controller throttles the application’s CPU usage when CPU
jitters occur and exceed the CPU limit.

—-— Used Cores (50ms Granularity)
—-==- Used Cores (1s Granularity)
— Limit

%: CFS Throttles

# of Cores

0.0 0.5 1.0 15 2.0
Second

The CPU usage trace of a CPU-bursty LC service in
different time scales. 8



CPU Jitters

* Shared CPU pool for CPU-bursty
applications.

] Thread 1 Thread 2
« CPU-bursty hyper-threads running on S| (cPU-bursty)| | (Non-bursty)
paired logical cores could contend for 3
resources.

Logical Core 1| | Logical Core 2

Physical Core




CPU Jitters

* Shared CPU pool for CPU-bursty
applications.

* Setup a shared CPU pool on each node
for CPU-bursty applications.

Other CPU Cores




CPU Jitters

nared CPU pool for CPU-bursty

oplications.
* Setup a shared CPU pool on each node
for CPU-bursty applications.

* Divide LC applications into two
categories: exclusive and shared.

Shared Exclusive
Applications Applications
e e = -

Other CPU Cores

21




CPU Jitters

* Burstable CFS (Completely Fair Scheduler) Controller 2!,

CFS

Limit]

CPU
Util.

periods.
CFSThrojtles

-
-
-— —y

S -~ -

Add burstable
bucket into
CFS controller

m—)

1

2 3 4 5 0

>*CFS
Period

CFS |

Limit

CPU
Util.

* Use token bucket to carry over some unused quotas to future CFS

1

2 3 4 5 0

[1] Burstable CFS bandwidth controller. https://lwn.net/ml/linux- kernel/20210202114038.64870-1-
changhuaixin@linux.alibaba.com/.

*CFS
Period

22


https://lwn.net/ml/linux-%20kernel/20210202114038.64870-1-changhuaixin@linux.alibaba.com/

CPU Jitters

* Production Deployment (1260k LC
Instances).

* Shared LC instances being throttled

during peak time: ->

reduction in the average RT
enabled by our approach.

Application ID
m o Qw»

05 06 07 08 09 1.0
Response Time (Normalized)

Average response time of 5
representative CPU-bursty LC
services after enabling our
solution (normalized by the daily
average before the deployment)



Variations on Memory Bandwidth

* Variations in memory bandwidth
are prevalent.

* Especially in batch jobs with
different computing phases.

* Around of the machines have

memory access latency
longer than the average due to high
memory bandwidth utilization.

* Excessive memory bandwidth
utilization undermines LC services’
QoS.

=

_o O =mO O =
Wh OO W OO »n O

IIIIIIIIIIIII

Minute

The memory bandwidth consumption
of 3 batch job instances (estimated by
# L3 cache misses per second and

normalized by the maximum)
24



Variations on Memory Bandwidth

* Memory bandwidth control using

Intel’s Dynamic Resource Control /S
(DRC) [2],
* LC services’ CPI: no noticeable changes.
* Median memory memory access -
latency: ~100 ns -> ~140 ns. \ )
* Median memory bandwidth utilization: =& = s é ﬁg éﬁé
~15% -> ~30%. Architectural overview of
* The throughput of batch jobs also sees Dynamic Resource Control *

an order-of-magnitude improvement.

[1] Zhang et al., LIBRA: Clearing the Cloud Through Dynamic Memory Bandwidth Management. In Proc. IEEE HPCA
2021



Handling Seasonal Shopping
Festivals

A Case Study



Handling Seasonal Shopping
Festivals: A Case Study

* Alibaba’s e-commerce platform hosts a number of Seasonal Shopping
Festivals (S5Fs) around the year, e.g., on Nov. 11.

* Please refer to our paper for more details.

it ’755 /mz@:n 2%

105 +-ummzsn ) ¢ / 4-
210 sarizes o
ax 1406 +aus 4) sezra

38 rrxanmarcamA
Full- day sales on Tmall of an SSF held on Nov. 11, 2020:

27

Image credit to Xinhuanet: http://www.xinhuanet.com/english/2020-11/12/c 139511564.htm



http://www.xinhuanet.com/english/2020-11/12/c_139511564.htm

Conclusion

* Cluster-wide macro-management:

* Host & GPU memory are the bottlenecks in resource
overcommitment.

* Proactive memory reclamation.

* Tidal scaling.

e FEHMKEAE
w THE HONG KONG UNIVERSITY OF QAllbaba Group

SCIENCE AND TECHNOLOGY INEPEPEH

28



Conclusion

* Node-level micro-management:

* CPU tiny jitters and memory bandwidth contention can
undermine LC services’ QoS.

* Shared CPU pool and burstable CFS controller to reduce the
impacts of tiny CPU spikes on applications’ performance.

* Introduced Intel’s Dynamic Resource Control (DRC) to adaptively
regulate memory bandwidth contentions among applications.

- BEMBAS aAllbaba Group

THE HONG KONG UNIVERSITY OF
W SCIENCE AND TECHNOLOGY foEEEPE




Conclusion

* Handling seasonal shopping festivals:

* We leveraged these techniques in our shopping festivals to handle
exponentially surging user traffic at minimum resource cost.

S FERKAE
A THE HONG KONG UNIVERSITY OF aAllb aba Group

SCIENCE AND TECHNOLOGY PP E A

i

30



Acknowledgement

* We thank numerous colleagues at Alibaba who have
implemented and maintained this system.

e FEMNKAE

L THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

i

€248

libaba Group
PP




