
Yongkang Zhang†*, YinghaoYu*, Wei Wang†, Qiukai Chen*, Jie Wu*, Zuowei Zhang*, Jiang Zhong*, Tianchen Ding*, Qizhen Weng†*, 
LingyunYang†*, Cheng Wang†*, Jian He*, GuodongYang* , Liping Zhang*

Workload Consolidation in Alibaba Clusters
The Good, the Bad, and the Ugly

†Hong KongUniversity of Science andTechnology *AlibabaGroup



Table of Contents

•Background
•Cluster-wide Macro-management
•Node-level Micro-management
•Handling Seasonal Shopping Festivals: A Case Study
•Conclusion



Background
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Alibaba’s E-commerce Businesses

• Alibaba is one of the largest IT giants in the world……

• Alibaba’s businesses are developed on a wide range of technology stacks.

Images credit to Wikipedia: https://www.wikipedia.org/
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Alibaba’s Workload Management
System
• The scale of Alibaba’s clusters:
• Dozens of large clusters.
• A few hundred ~ more than 10k machines in each cluster.
• Hundreds of thousands of machines in total.
• Tens of millions of CPU cores and tens of thousands of GPUs. 
• Millions of service instances. 

• Two types of workloads:
• Long-running, latency-critical (LC) services.
• Throughput-oriented batch jobs.
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Design Principles

•Objectives
• Reduce the resource provisioning cost without violating the 

Service-level Objectives (SLOs) of applications.

• Transparent to applications.

• Generally applicable to a range of services and frameworks.
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Cluster-wide Macro-Management
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The Problem of Overcommitment

• Diurnally changing LC services.
• The diurnal pattern of CPU & GPU utilization

creates opportunities for overcommitment.
• Host and GPU memory limit the

overcommitment at night.

• The memory bottleneck.
• Unlike CPUs and GPUs, the host and GPU 

memory footprints of LC services stay 
relatively stable.
• Batch jobs request more memory……

• Aggravates this problem.

GPU Memory
The memory utilization of 100

LC services (usage / request, %).

Host Memory
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Memory Reclamation

• Tracking memory idleness.
• Following Google’s kstaled [1], we

added kidled [2] into the Linux 
kernel to periodically mark the age of 
reclaimable pages.

• A large number of reclaimable idle
pages exist in LC services.
• Around half of swappable anonymous
pages have an age ≥ 48 hrs.

• Around half of clean file pages have an
age ≥ 3 hrs.

Swappable anonymous pages

The distribution of (Reclaimable page / total
memory usage) of LC services running on each 

machine in a cluster by the age (last access time) 
of memory pages.

Clean file pages

[1] kstaled. https://lore.kernel.org/lkml/20110922161448.91a2e2b2.akpm@google.com/T/.
[2] kidled. https://github.com/alibaba/cloud-kernel/blob/linux-next/mm/kidled.c.
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Memory Reclamation

• Proactive memory reclamation.
• Reclaim pages with an age longer than a threshold tuned by small-

scale experiments on representative LC services. 
• Use memory pressure stall information (PSI) [1] to detect memory

pressure and evict batch jobs.
• Please refer to our paper for more details.

[1] Tracking pressure-stall information. https://lwn.net/Articles/759781/. 8
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Memory Reclamation

•Proactive memory reclamation.
• Deployment results (median
utilization, %):
• Anonymous pages: 74% -> 67%
• File pages: 13% -> 4%

File / anonymous page utilization
before and after memory reclamation.
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Memory Reclamation

•Proactive memory reclamation.
•No significant impacts on LC

services in terms of:
• CPI (cycles per instruction) [1]

• Average service response time
CPI (cycles per instruction)

Comparison of LC services’ performance
before and after memory reclamation.

Average response time

[1] Zhang et al., CPI2: CPU performance isolation for shared compute clusters. In Proc. ACM EuroSys 2013.
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Tidal Scaling

•Memory reclamation is insufficient.
• Cannot be applied to GPU memory.
• The resulting memory utilization still has no clear diurnal

pattern.

•Why not use vertical scaling / horizontal scaling?
• Fine-grained vertical scaling is insufficient.
• Horizontal scaling cannot be directly applied.

11



Tidal Scaling

• Bimodal instance.
• Applied to LC services with diurnal traffics.
• Two states: 
• Running instances: actively serve user requests and consume resources.
• Dormant instances: no running process and resource consumption.

• A bimodal instance can rapidly change its state by:
• Starting processes before the day’s traffic picks up.
• 🌛->🌞 : Dormant -> Running

• Terminating processes before the night arrives.
• 🌞->🌛 : Running -> Dormant
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Tidal Scaling

• Evaluation.
• #0, 1: LC services that only

consume CPUs.
• # 2-9: LC services that consume

both CPUs and GPUs.
• No significant variations in

service response time (RT).
Service RT (normalized by each application’s
daily average) when tidal scaling is enabled.
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Tidal Scaling

• Evaluation.
• #0, 1: LC services that only

consume CPUs.
• # 2-9: LC services that consume

both CPUs and GPUs.
• Create a diurnal pattern for host

& GPU memory. Host memory utilization
(usage / request, %) of LC

services

GPU memory utilization
(usage / request, %) of LC

services
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Tidal Scaling

• Evaluation.
• #0, 1: LC services that only

consume CPUs.
• # 2-9: LC services that consume

both CPUs and GPUs.
• Keep CPU & GPU utilization

stable.
CPU utilization (usage /

request, %) of LC services
GPU utilization (usage /

request, %) of LC services
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Node-level Micro-management
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CPU Jitters

• Alibaba’s applications have tiny CPU load spikes……

The CPU usage trace of a CPU-bursty LC service in 
different time scales. 17



CPU Jitters

• CFS controller throttles the application’s CPU usage when CPU
jitters occur and exceed the CPU limit.

The CPU usage trace of a CPU-bursty LC service in 
different time scales.

: CFSThrottles
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CPU Jitters

• Shared CPU pool for CPU-bursty
applications.
• CPU-bursty hyper-threads running on 

paired logical cores could contend for 
resources.

Thread 2
(Non-bursty)

Thread 1
(CPU-bursty)

Logical Core 1 Logical Core 2

Physical Core
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CPU Jitters

Node

Shared CPU Pool

Other CPU Cores

• Shared CPU pool for CPU-bursty
applications.
• Set up a shared CPU pool on each node 

for CPU-bursty applications.
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CPU Jitters

• Shared CPU pool for CPU-bursty
applications.
• Set up a shared CPU pool on each node 

for CPU-bursty applications.

• Divide LC applications into two 
categories: exclusive and shared.

Node

Shared CPU Pool

Other CPU Cores

Shared
Applications

Exclusive
Applications
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CPU Jitters

• Burstable CFS (Completely Fair Scheduler) Controller [1].
• Use token bucket to carry over some unused quotas to future CFS

periods.

CFS
Period1 2 3 4 5 6

CPU
Util.

CFS
Limit

CFS
Period1 2 3 4 5 6

CPU
Util.

CFS
Limit

CFSThrottles Add burstable
bucket into
CFS controller

[1] Burstable CFS bandwidth controller. https://lwn.net/ml/linux- kernel/20210202114038.64870-1-
changhuaixin@linux.alibaba.com/. 
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CPU Jitters

• Production Deployment (160k LC 
instances). 
• Shared LC instances being throttled 

during peak time: 73.4% -> 0.12%.
• 10 – 35% reduction in the average RT 

enabled by our approach. Average response time of 5
representative CPU-bursty LC

services after enabling our
solution (normalized by the daily
average before the deployment)
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Variations on Memory Bandwidth

• Variations in memory bandwidth 
are prevalent.
• Especially in batch jobs with 

different computing phases.
• Around 12% of the machines have 

memory access latency 1.5 - 8x
longer than the average due to high 
memory bandwidth utilization.
• Excessive memory bandwidth 

utilization undermines LC services’ 
QoS.

The memory bandwidth consumption
of 3 batch job instances (estimated by

# L3 cache misses per second and
normalized by the maximum)
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Variations on Memory Bandwidth

•Memory bandwidth control using 
Intel’s Dynamic Resource Control
(DRC) [1].
• LC services’ CPI: no noticeable changes.
• Median memory memory access 

latency: ~100 ns -> ~140 ns.
• Median memory bandwidth utilization:

~15% -> ~30%.
• The throughput of batch jobs also sees

an order-of-magnitude improvement.
[1] Zhang et al., LIBRA: Clearing the Cloud Through Dynamic Memory Bandwidth Management. In Proc. IEEE HPCA 
2021

Architectural overview of 
Dynamic Resource Control [1]
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Handling Seasonal Shopping
Festivals
A Case Study
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Handling Seasonal Shopping
Festivals: A Case Study
• Alibaba’s e-commerce platform hosts a number of Seasonal Shopping 

Festivals (SSFs) around the year, e.g., on Nov. 11.
• Please refer to our paper for more details.

Full-day sales on Tmall of an SSF held on Nov. 11, 2020:
498.2 billion RMB ($68.2 billion USD)

Image credit to Xinhuanet: http://www.xinhuanet.com/english/2020-11/12/c_139511564.htm
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Conclusion

• Cluster-wide macro-management:
• Host & GPU memory are the bottlenecks in resource

overcommitment.
• Proactive memory reclamation.
• Tidal scaling.
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Conclusion

• Node-level micro-management:
• CPU tiny jitters and memory bandwidth contention can

undermine LC services’ QoS.
• Shared CPU pool and burstable CFS controller to reduce the

impacts of tiny CPU spikes on applications’ performance.
• Introduced Intel’s Dynamic Resource Control (DRC) to adaptively

regulate memory bandwidth contentions among applications.
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Conclusion

• Handling seasonal shopping festivals:
• We leveraged these techniques in our shopping festivals to handle

exponentially surging user traffic at minimum resource cost.
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