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Background



Alibaba’s E-commerce Businesses

* Alibaba is one of the largest IT giants in the world......
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. AIibaba’s businesses are developed on a wide range of technology stacks.
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Alibaba’s Workload Management
System

* The scale of Alibaba’s clusters:
large clusters.
machines in each cluster.
machines in total.
CPU cores and of GPUs.
service instances.

* Two types of workloads:
* Long-running, latency-critical (LC)
* Throughput-oriented



Design Principles

* Objectives
* Reduce the resource provisioning cost without violating the
Service-level Objectives (SLOs) of applications.

* Transparent to applications.

* Generally applicable to a range of services and frameworks.



Cluster-wide Macro-Management



The Problem of Overcommitment

* Diurnally changing LC services.
* The diurnal pattern of CPU & GPU utilization
creates opportunities for overcommitment.

 Host and GPU memory limit the
overcommitment at night.

* The memory bottleneck.

e Unlike CPUs and GPUs, the host and GPU
memory footprints of LC services stay
relatively stable.
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* Aggravates this problem. ;



Memory Reclamation

* Tracking memory idleness.
* Following Google’s kstaled [, we
added kidled 2!into the Linux

kernel to periodically mark the age of
reclaimable pages.
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- Around half of swappable anonymous , memory usage) of LC services running on eech
pages have an age = 48 hrs. machine in a cluster by the age (last access time)

* Around half of clean file pages have an
age = 3 hrs.

[1] kstaled. https://lore.kernel.org/lkml/20110922161448.91a2e2b2.akpm@gooqgle.com/T/.
[2] kidled. https://github.com/alibaba/cloud-kernel/blob/linux-next/mm/kidled.c.

of memory pages.


https://lore.kernel.org/lkml/20110922161448.91a2e2b2.akpm@google.com/T/
https://github.com/alibaba/cloud-kernel/blob/linux-next/mm/kidled.c

Memory Reclamation

* Proactive memory reclamation.

* Reclaim pages with an longer than a threshold tuned by small-
scale experiments on representative LC services.

* Use memory pressure stall information (PSI) [*! to detect memory
pressure and evict batch jobs.

* Please refer to our paper for more details.

[1] Tracking pressure-stall information. https://lwn.net/Articles/759781/.
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Memory Reclamation
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Memory Reclamation

* Proactive memory reclamation. N [
< B Ater |
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[1] Zhang et al., CPI2: CPU performance isolation for shared compute clusters. In Proc. ACM EuroSys 2013.



Tidal Scaling

* Memory reclamation is insufficient.

* Cannot be applied to GPU memory.
* The resulting memory utilization still has no clear diurnal
pattern.
* Why not use vertical scaling / horizontal scaling?

* Fine-grained vertical scaling is insufficient.
* Horizontal scaling



Tidal Scaling

* Bimodal instance.
* Applied to LC services with diurnal traffics.

e Two states:
Instances: actively serve user requests and consume resources.
Instances: no running pI’OCESS and Fresource consumption.

* A bimodal instance can rapidly change its state by:
» Starting processes before the day’s traffic picks up.
o Do, >
* Terminating processes before the night arrives.

o« UH-> U ->



Tidal Scaling

* Evaluation.

* #0, 1: LCservices that only
consume CPUs.

LC services that consume
both CPUs and

* No significant variations in _, Service RT (normalized by each application’s
service response time (RT). daily average) when tidal scaling is enabled.
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Tidal Scaling

* Evaluation.
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Tidal Scaling

* Evaluation.

* #0, 1: LCservices that only
consume CPUs.

* # 2-9: LC services that consume
both CPUs and GPUs.
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Node-level Micro-management



CPU Jitters

* Alibaba’s applications have tiny CPU load spikes......
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The CPU usage trace of a CPU-bursty LC service in
different time scales.
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CPU Jitters

* CFS controller throttles the application’s CPU usage when CPU
jitters occur and exceed the CPU limit.

—-— Used Cores (50ms Granularity)
—-==- Used Cores (1s Granularity)
— Limit

%: CFS Throttles
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The CPU usage trace of a CPU-bursty LC service in
different time scales. 8



CPU Jitters

* Shared CPU pool for CPU-bursty
applications.

] Thread 1 Thread 2
« CPU-bursty hyper-threads running on S| (cPU-bursty)| | (Non-bursty)
paired logical cores could contend for 3
resources.

Logical Core 1| | Logical Core 2

Physical Core




CPU Jitters

* Shared CPU pool for CPU-bursty
applications.

* Setup a shared CPU pool on each node
for CPU-bursty applications.

Other CPU Cores




CPU Jitters

nared CPU pool for CPU-bursty

oplications.
* Setup a shared CPU pool on each node
for CPU-bursty applications.

* Divide LC applications into two
categories: exclusive and shared.

Shared Exclusive
Applications Applications
e e = -

Other CPU Cores
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CPU Jitters

* Burstable CFS (Completely Fair Scheduler) Controller 2!,

CFS
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* Use token bucket to carry over some unused quotas to future CFS
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[1] Burstable CFS bandwidth controller. https://lwn.net/ml/linux- kernel/20210202114038.64870-1-
changhuaixin@linux.alibaba.com/.
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CPU Jitters

* Production Deployment (1260k LC
Instances).

* Shared LC instances being throttled

during peak time: ->

reduction in the average RT
enabled by our approach.
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Average response time of 5
representative CPU-bursty LC
services after enabling our
solution (normalized by the daily
average before the deployment)



Variations on Memory Bandwidth

* Variations in memory bandwidth
are prevalent.

* Especially in batch jobs with
different computing phases.

* Around of the machines have

memory access latency
longer than the average due to high
memory bandwidth utilization.

* Excessive memory bandwidth
utilization undermines LC services’
QoS.
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The memory bandwidth consumption
of 3 batch job instances (estimated by
# L3 cache misses per second and

normalized by the maximum)
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Variations on Memory Bandwidth

* Memory bandwidth control using

Intel’s Dynamic Resource Control /S
(DRC) [2],
* LC services’ CPI: no noticeable changes.
* Median memory memory access -
latency: ~100 ns -> ~140 ns. \ )
* Median memory bandwidth utilization: =& = s é ﬁg éﬁé
~15% -> ~30%. Architectural overview of
* The throughput of batch jobs also sees Dynamic Resource Control *

an order-of-magnitude improvement.

[1] Zhang et al., LIBRA: Clearing the Cloud Through Dynamic Memory Bandwidth Management. In Proc. IEEE HPCA
2021



Handling Seasonal Shopping
Festivals

A Case Study



Handling Seasonal Shopping
Festivals: A Case Study

* Alibaba’s e-commerce platform hosts a number of Seasonal Shopping
Festivals (S5Fs) around the year, e.g., on Nov. 11.

* Please refer to our paper for more details.
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Conclusion

* Cluster-wide macro-management:

* Host & GPU memory are the bottlenecks in resource
overcommitment.

* Proactive memory reclamation.

* Tidal scaling.
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Conclusion

* Node-level micro-management:

* CPU tiny jitters and memory bandwidth contention can
undermine LC services’ QoS.

* Shared CPU pool and burstable CFS controller to reduce the
impacts of tiny CPU spikes on applications’ performance.

* Introduced Intel’s Dynamic Resource Control (DRC) to adaptively
regulate memory bandwidth contentions among applications.
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Conclusion

* Handling seasonal shopping festivals:

* We leveraged these techniques in our shopping festivals to handle
exponentially surging user traffic at minimum resource cost.
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