“%' T HONG KONG UNIVERSITY OF . Alibaba Group
W N S T o0y Beware Of Fragmentatlon: EL BﬁI@PjEﬁm

Scheduling GPU-Sharing Workloads with Fragmentation Gradient Descent

Qizhen Wengt#* Lingyun Yangt#* Yinghao Yut WeiWangt XiaochuanTang” GuodongYang” Liping Zhang”
t: Hong Kong University of Science and Technology A: Alibaba Group (*: equal contribution)

TL;DR: We propose a novel measure of fragmentation to statistically quantify the degree of GPU fragmentation caused by different sources.

Based on this measure, we invent a scheduling policy FGD that packs tasks to minimize the growth of fragmentation and maximize GPU allocation.

ML-as-a-Service clouds suffer low GPU utilization GPU sharing comes to rescue

[1] Weng et al., “MLaas in the Wild: Workload analysis and scheduling in large-scale heterogeneous GPU clusters,” in NSDI 2022.
[2] Hu et al., “Characterization and prediction of deep learning workloads in large-scale GPU datacenters,” in SC 2021.
[3] Narayanan et al., “Heterogeneity-aware cluster scheduling policies for deep learning workloads,” in OSDI 2020

Avg. 25-50% GPU utilization in production MLaaS clouds [1-3].
P50 of 8-GPU nodes P50 of 2-GPU nodes

100 100 — 8000 —
80 eoli V7 - 71 wio GPU sharing (simulated) | Gpyy sharing lets multiple tasks run on a
. Y 5 / 86000 [w/ GPU sharing (measured) . .
g 601 S 0l }/ g single GPU, via DL framework
LSL 20 T ’l’ T g;ld r:yooo% é é % manipulation, or CUDA API interception,
20 . 205 :' --. z:LTMem §2000 %ééé %Il é@ é % é é % % é % ? ? % % % ‘ % %‘%ﬁ or hardware-assisted methods (e.g., MIG).
095 50 75 100 03 : P e——— ok é & Sharing saves 50% GPUs in Alibaba [1].

0123456 7 8 91011121314151617181920212223
Hour of the day

Classical multi-resource bin-packing cannot work
effectively on GPUs due to formulation mismatch

Utilization (%) Utilization (%)

Yet, GPU sharing doesn’t always improve allocation.

Often, allocating partial GPUs results in fragmentation

Trace: 8k Tasks and 1.2k nodes with 6.2k GPUs Neither of these formulation

#1: ignores GPU

In many clusters, the GPU

ik ttempts works: (1) treating multiple -
8 e ;
allocation rate can reach 80 : 3) = GPUs as a unified logical device; allocation boundary J Logical GPU
0, 1 1 Ly " .
85-90% maximum, leaving £ 60 :(‘2 . 1 ! (2) treating each GPU as an in- 1-GPU Task 1.3 GPUs
hundreds of GPUs unable s ,, B s 2 “mmm 1dle on Node | dependent resource dimension. X
to allocate! © —— IdleonNode | 5 1 B Req by Task
. 20 Req by Task = <1 CPU 16 CPUs
Many users e{(perlenced %0 o5 10 15 20 0 20 40 60 80 100 gpyq task resource vector
scheduling failures even Num of GPUs (up to 8.0) Num of CPUs §
with SlffflCIE!nt GPU Insufficient GPUs on nodes Insufficient CPUs GPU-2 SAPYEIN 0.4-GPU Task
allocation quotas.

given the requests of tasks

(or stranded GPUs)

Definition of GPU Fragmentation: E,(M) = Y en PmEa(m) -
The absolute measure is defective. Be statistical For each task m in task set M, Sum thefragmentatlon viewed by task m
-al definition:
! Task Skyline Task D _ 100 : A . - S !)
Gpudra_s,ﬂ(A Y E | T e GPU _ Frag (IDef:c:ent) Task D ¢ mmed by each task's
. g II Task A . Node A i o view o_f node.
Frag ' & Non-Frag > soy o B0 T L kee oo fragmentation, weighted
T "D' T sk e § 25 - FB{z;LF;tn:f:’rZé 111 ! I\/ by their popularity.
(odeil B € TTTCPU X : O VEr: s~ o) Fragmentation region:
0 P et Q-l, Q-II: insufficient GPU
. _] 0 20 40 60 80 100 120)
A defective definition of fragmentation Arrived workloads (in % of cluster GPU capacity) O Task B Task E O Task CCPU Q-1V: Stranded GPU
in absolute terms — “a node is frag- () >

X-axis: Non-GPU tasks

>

Absolute fragmentation stays low (<5%)

mented if and only if it cannot run any
task”. Task skyline determines the frag /
non-frag boundary, yet, only 0.06% task
instances belong to the skyline ©

Schedule Alg.: Fragmentation Gradient Descent

in fragmentation regions:
@ Aware of workload distribution while stable to small changes.

© Break down fragmentation into Deficient and Stranded.

© Independent of scheduling policy and node distribution.

Formal Description of Computation F,(m)

throughout scheduling simulation (8k
tasks to 6.2k GPUs) — @ fail to provide
useful feedback to the scheduling quality

Algorithm 1: Node selecting process of FGD

Input :Node set N, incoming task m, workload set M
Output : Assigned node n*
1 Initialize node score set S « @, and output n* « @.
parallel for noden € N do
2 if Insufficient resources || constraints not met then
3 | Return b Filter out unavailable nodes
1 n~ « AssignTaskToNode(m, n) > Hypothetically
@ s
6 S« SuU(nA)
7 if S # @ then

®* L n* « argmin,eg A > pick the node with the least A.

A~ FSFU(M) — FSPYU(M) > Fragmentation increment

Schedule Tasks towards the
Steepest Descent of Fragmentation

: ’ @) Fg+=-20 .

@ Fy+=10 H eV

Case 1: All Residuals are Frag. (Q-l, Q-Il, Q-IV, x-axis):

E.(m) = R Residual resource on Gf
n(m) legan ' Gy: GPU set on node n

Case 2: Partial or No Residuals are Frag. (Q-lll):

F,(m) = 21<g<GnRGPU (RGP” < mm{DGPU 1))

Node A he demand of task m,

Node B

Evaluation: Schedule 8k tasks to 6.2k GPUs (1.2k nodes)

FGD: Lowest Frag. Rate & Fewest GPUs Unallocated

100 ===+ Random ~20 ===+ Random <25 —-«+ Random
X ~—+= DotProd X —-= DotProd s NG
L] === Clusterin ~15 ‘ 20 NS —-= DotProd
g : g © == Clustering T 15 NG === Clustering
- 1 e S e ot e e by I;ack::ng 210 - Packing (G I N S B P, Packing
o estFit ~ BestFit Y10 = = BestFi
o - estFit
g 251 — FGD ? 5 — FGD =5 — — FGD
0 e . . Ideal
=]
0 20 40 60 80 100 120 00 20 40 60 80 100 120 0 80 90 120

Arrived workloads (in % of cluster GPU capacity)

Fig 4a: FGD pursues the lowest fragmentation among various policies in scheduling production workloads, leading to fewest GPUs unallocated.

ARTIFACT

100 110

Arrived workloads (in % of cluster GPU capacity) Arrived workloads (in % of cluster GPU capacity)

EVALUATED
6) usenix
P ssocnTion
REPRODUCED
ARTIFACT

EVALUATED
susenix

ARTIFACT
EVALUATED

susenix
P ssocmiion

Unallocated GPU (%)

P #ssocmiion

| == reD
BestFit

I FGD
[EEE BestFit

Bl Packing
I Clustering

I DotProd
I Random

Fig 4b: FGD allocates
more GPUs across a
variety of settings.
See more results and
task distributions in
paper and code.

Trace & Code

B DotProd
] Random

BN Packing
BE Clustering

Unallocated GPU (%)

40%

AVAILABLE FUNCTIONAL

60% 80%

100%
Proportion of GPU-sharing workloads in terms of GPU requests

10% 20%
Proportion of workloads with GPU type constraints in terms of GPU requests

