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TL;DR: We propose a novel measure of fragmentation to statistically quantify the degree of GPU fragmentation caused by different sources.

Based on this measure, we invent a scheduling policy FGD that packs tasks to minimize the growth of fragmentation and maximize GPU allocation.

ML-as-a-Service clouds suffer low GPU utilization GPU sharing comes to rescue

[1] Weng et al., “MLaas in the Wild: Workload analysis and scheduling in large-scale heterogeneous GPU clusters,” in NSDI 2022.
[2] Hu et al., “Characterization and prediction of deep learning workloads in large-scale GPU datacenters,” in SC 2021.
[3] Narayanan et al., “Heterogeneity-aware cluster scheduling policies for deep learning workloads,” in OSDI 2020

Avg. 25-50% GPU utilization in production MLaaS clouds [1-3].
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Classical multi-resource bin-packing cannot work
effectively on GPUs due to formulation mismatch
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Yet, GPU sharing doesn’t always improve allocation.

Often, allocating partial GPUs results in fragmentation

Trace: 8k Tasks and 1.2k nodes with 6.2k GPUs  Neither of these formulation
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Definition of GPU Fragmentation: E,(M) = Y en PmEa(m) -
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Absolute fragmentation stays low (<5%)

mented if and only if it cannot run any
task”. Task skyline determines the frag /
non-frag boundary, yet, only 0.06% task
instances belong to the skyline ©

Schedule Alg.: Fragmentation Gradient Descent

in fragmentation regions:
@ Aware of workload distribution while stable to small changes.

© Break down fragmentation into Deficient and Stranded.

© Independent of scheduling policy and node distribution.

Formal Description of Computation F,(m)

throughout scheduling simulation (8k
tasks to 6.2k GPUs) — @ fail to provide
useful feedback to the scheduling quality

Algorithm 1: Node selecting process of FGD

Input :Node set N, incoming task m, workload set M
Output : Assigned node n*
1 Initialize node score set S « @, and output n* « @.
parallel for noden € N do
2 if Insufficient resources || constraints not met then
3 | Return b Filter out unavailable nodes
1 n~ « AssignTaskToNode(m, n) > Hypothetically
@ s
6 S« SuU(nA)
7 if S # @ then

®* L n* « argmin,eg A > pick the node with the least A.

A~ FSFU(M) — FSPYU(M) > Fragmentation increment

Schedule Tasks towards the
Steepest Descent of Fragmentation
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Case 1: All Residuals are Frag. (Q-l, Q-Il, Q-IV, x-axis):

E.(m) = R Residual resource on Gf
n(m) legan ' Gy: GPU set on node n

Case 2: Partial or No Residuals are Frag. (Q-lll):

F,(m) = 21<g<GnRGPU (RGP” < mm{DGPU 1))

Node A he demand of task m,

Node B

Evaluation: Schedule 8k tasks to 6.2k GPUs (1.2k nodes)

FGD: Lowest Frag. Rate & Fewest GPUs Unallocated
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Fig 4a: FGD pursues the lowest fragmentation among various policies in scheduling production workloads, leading to fewest GPUs unallocated.
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Fig 4b: FGD allocates
more GPUs across a
variety of settings.
See more results and
task distributions in
paper and code.
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