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* GPU Sharing & Fragmentation in ML Cluster



ML-as-a-Service (MLaaS) Cloud

Users
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All-in-one platform for users S @ @ ML Platform for Al (PAI)
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Support various workloads: f

training, inference, evaluation ...

ML tasks running in containers
scheduled to >1000 GPU servers

GPU Server

[1] Weng et al., "MLaaS in the Wild: Workload analysis and scheduling in large-scale
heterogeneous GPU clusters," in NSDI 2022.



GPU underutilization

25-50% GPU utilization in production ML clusters [1-4]
« Most ML tasks cannot fully utilize the capability of modern GPUs
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1] Weng et al., "MLaaS in the Wild: Workload analysis and scheduling in large-scale heterogeneous GPU clusters," in NSDI 2022.
2] Narayanan et al., "Heterogeneity-aware cluster scheduling policies for deep learning workloads," in OSDI 2020

3] Hu et al., "Characterization and prediction of deep learning workloads in large-scale GPU datacenters," in SC 2021.

4] Li et al., "Lyra: Elastic scheduling for deep learning clusters," in EuroSys 2023.
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The need for GPU sharing

« GPU sharing lets multiple tasks run on a single GPU
* e.g., via DL framework, CUDA API interception, or hardware support (MIG)

» Sharing saves 50% GPUs in Alibaba PAI [1]
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[1] Weng et al., "MLaa$S in the Wild: Workload analysis and scheduling in large-scale heterogeneous GPU clusters," in NSDI 2022. 5



Yet, partial GPU allocation results in
fragmentation and limits allocation rate

GPU-sharing cluster H with 1.2k nodes, 6.2k GPUs, 8k tasks (Alibaba)

* Fully packed after allocating 92% GPUs, wasting ~500 GPUs
» User experience scheduling failures even with sufficient GPU allocation quotas
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Packing improves allocation

 After GPU sharing, "1 GPU" left in idle but not allocatable to Task A
« Mitigate fragmentation with packing Task A
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Recap: Multi-Resource Bin-Packing

GPU Task Resource Request
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Best Fit: Verma et al. "Borg" EuroSys '15
Dot Product: Grandl et al. "Tetris" SIGCOMM '14



@5E Task Resource Request Node Resource Cépacity
Does classical multi-resource
bin-packing work for GPUs"

How to formulate GPUs into a resource dimension?




Attempt #1

* Pool together a node’s multiple available GPUs into one logical GPU
* e.9., 2-GPU node with <0.9 GPUs, 0.4 GPUs> => having 1.3 GPUs idle

 Problem:

* GPU pooling ignores the allocation boundary between GPUs
« Unable to differentiate the fragmentation on individual GPUs
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Attempt #2

 Treat each GPU as an independent resource dimension
* e.9., 2-GPU node has 3D-resource vector <16 CPUs, 0.9 GPUs, 0.4 GPUs>

* Problem:
« Choosing the wrong expansion of task resource vectors may block allocation

Task <2 CPUs, 0.5 GPUs>

2 CPUs

Task <2 CPUs, 0.5 GPUs, 0 GPUs>

CPU 16 CPUs

Task <2 CPUs, 0 GPUs, 0.5 GPUs>
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Attempt #2

 Treat each GPU as an independent resource dimension
* .9., a 2-GPU node with resource vector <16 CPUs, 0.9 GPUs, 0.4 GPUs>

* Problem:
 Unlike other resources, GPUs are interchangeable!

A GPU task has a "deformable" resource vector wrt available GPUs
on the nodes, invalidating the conventional bin-packing formulation!

CPU 16 CPUs 2 CPUs Task <2 CPUs, 0.5 GPUs>

Task <2 CPUs, 0.5 GPUs, 0 GPUs>
0.5G <

Task <2 CPUs, 0 GPUs, 0.5 GPUs>
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@)GE Task Resource Request Node Resource Capacity
Does classical multi-resource
bin-packing work for GPUs"

Not for shared GPUs! Need a new approach to address the
fragmentation problem of scheduling GPU-sharing workloads
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"To Measure Is the First Step to Improve”

* How to formally define fragmentation?
* "You keep using that word. | do not think it means what you think it means.’

* How to further reason the sources of fragmentation?
* Insufficient GPUs, stranded GPUs, or both, how much do they contribute?

* How to efficiently mitigate fragmentation?
« Simpler and more explainable than using ML techniques
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Fragmentation in absolute term ®

Bad Def.: "A node is fragmented if and only if it cannot run any task”
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O .......................................................
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The absolute measure is overly restrictive
In fragmentation identification

« Scheduling 8k tasks to 6.2k GPUs
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Fragmentation stays at a low level (<5%) throughout the scheduling
— Failing to provide early feedbacks to the scheduling quality



A statistical fragmentation measure ©

The next task to arrive is considered to be randomly sampled from typical workloads
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* Roughly, as finer-grained calculation should consider fragmentation at per-GPU level. See more in the §3.2 of the paper.



A statistical fragmentation measure ©

Given the task distribution of a target workload, it measures the
expected GPU resources that cannot be allocated
 Further broken down into different sources of fragmentation: Insufficient
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A statistical fragmentation measure ©

» Sensitive to scheduling quality; g )
useful feedback at early stages ¢ 7 Clustering
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Clustering: Xiao et al. “Gandiva" OSD/ '18

Packing: Weng et al. “MLaaS" NSDI '22 2
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Fragmentation Gradient

Descent (FGD)

Heuristic: schedule tasks towards the steepest descent of fragmentation

FGD scores nodes in parallel, thus scaling to large clusters: each decision
can be made in hundred of milliseconds in cluster with 1200 nodes

Algorithm 1: Task scheduling of FGD

Input :Cluster N, incoming task m, target workload M
Output : Assigned node n*

1 Initialize node score set S <— &, and output n* < @.
@ 2 parallel for node n € N do

3 if Insufficient resources || constraints not met then

4 | Return > Filter out unavailable nodes

5 n~ < AssignTaskToNode(m,n) > Hypothetically
@ 6 A < F,- (M) — F,(M) > Fragmentation increment
7 | S« SU(nA)

8 if S # & then

@ 9 n* < argmin,cgA > pick the node with the least A.

AV

Task
@:2..." @ @
@ FA+= 40}.‘3’00 @ FC+= _20
¥ (Q) Fg+=10:
v
Node A Node B

Node C
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A running example of FGD scheduling

Task A Task B Task C
2 accessible GPUs 0.3 GPU 0.5 GPU 0.7 GPU
| | |
A | 0.5 GPU idle FGD 0.5 FGD —» 0 FGD
V
Ly 2 S
B | 1.0 GPU idle 0.7 0.7
Frag amount: To GPU A: A will be fragmented to Task A, B, C

Y = PP Re™Y To GPU B: B will be no fragmentation to any Task

2) To GPU A: A will have no GPU left, thus no fragmentation
To GPU B: B will be fragmented to Task A, B, C

(3 To GPU A: Impossible
To GPU B: B will have no GPU left, thus no fragmentation
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L arge-scale trace-driven emulation

 Implementation: a pluggable T ~--+ Random
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https://github.com/hkust-adsl/kubernetes-scheduler-simulator
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-gpu-v2023
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Under varying workload distribution

GPU-Sharing Tasks
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Trace & Code
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Allocating partial GPUs results in severe fragmentation
* A new challenge that cannot be addressed using conventional bin-
packing approaches
A new fragmentation metrics

* Measure the expected GPU resources that cannot be allocated given a
workload distribution

« Support breakdown analysis to reason about fragmentation

Fragmentation Gradient Descent (FGD)
« Schedules tasks towards the steepest descent of GPU fragmentation Paper
» Packs tasks to fewer nodes, substantially reducing unallocated GPUs Stz
« Easy to implement




