Beware of Fragmentation:

Scheduling GPU-Sharing Workloads
with Fragmentation Gradient Descent

Paper published in USENIX ATC 2023

Qizhen WengT, Lingyun Yang®, Yinghao Yu'f, Wei Wang",
Xiaochuan Tang’, Guodong Yang’, Llpmg Zhang’

THKUST “Alibaba Group

B FEERKEKS -
Fem THE HONG KONG Alibaba Grou P
LULJJ UNIVERSITY OF SCIENCE - WEBEPPRERD

AND TECHNOLOGY

Agenda

* GPU Sharing & Fragmentation in ML Cluster

ML-as-a-Service (MLaaS) Cloud

Users
: ubmi
All-in-one platform for users S @ @ ML Platform for Al (PAI)
using different ML frameworks [} tenforFiow graph -learn () PyTorch o8> RAY
SplltlntoJ

Support various workloads: f

training, inference, evaluation ...

ML tasks running in containers
scheduled to >1000 GPU servers

GPU Server

[1] Weng et al., "MLaaS in the Wild: Workload analysis and scheduling in large-scale
heterogeneous GPU clusters," in NSDI 2022.

GPU underutilization

25-50% GPU utilization in production ML clusters [1-4]
« Most ML tasks cannot fully utilize the capability of modern GPUs

P50 of 2-GPU nodes

100 T 100 -
801: / 80-
X 60f ff R 601
L — CPU L : CPU
@) 40':- —- GPU 5 40 . GPU
20_:- ==: Mem 201+ - Mem
! = GPU Mem : = GPU Mem
0 . . . 0 - . . .
0 25 50 75 100 0 25 50 75 100

Utilization (%) Utilization (%)

Alibaba PAIl trace [1]

1] Weng et al., "MLaaS in the Wild: Workload analysis and scheduling in large-scale heterogeneous GPU clusters," in NSDI 2022.
2] Narayanan et al., "Heterogeneity-aware cluster scheduling policies for deep learning workloads," in OSDI 2020

3] Hu et al., "Characterization and prediction of deep learning workloads in large-scale GPU datacenters," in SC 2021.

4] Li et al., "Lyra: Elastic scheduling for deep learning clusters," in EuroSys 2023.

/T

The need for GPU sharing

« GPU sharing lets multiple tasks run on a single GPU
* e.g., via DL framework, CUDA API interception, or hardware support (MIG)

» Sharing saves 50% GPUs in Alibaba PAI [1]

8000
1 w/ GPU sharing (measured)

i%%%% %%%%é %%?5%%%%%%%%

012 3456 7 8 91011121314151617181920212223
Hour of the day

1 w/o GPU sharing (simulated)

GPUs allocated
N D (@)}
(@) o (@)
o o o
o o o

o

[1] Weng et al., "MLaa$S in the Wild: Workload analysis and scheduling in large-scale heterogeneous GPU clusters," in NSDI 2022. 5

Yet, partial GPU allocation results in
fragmentation and limits allocation rate

GPU-sharing cluster H with 1.2k nodes, 6.2k GPUs, 8k tasks (Alibaba)

* Fully packed after allocating 92% GPUs, wasting ~500 GPUs
» User experience scheduling failures even with sufficient GPU allocation quotas

100

8
80 - 2 .
Q 5 |
R 601 o ST
a 404 g 21 “'Ii ‘B |dle on Node
O 5. e |dle o1 Node 2 1 I Req by Task
Req by Task <1 =
0.0 0.5 1.0 1.5 2.0 0 20 40 60 80 100
Num of GPUs (up to 8.0) Num of CPUs

Insufficient GPUs Insufficient CPUs (stranded GPU) i

Agenda

« GPU Sharing & Fragmentation in ML Clusters
* Existing Approaches

* The Fragmentation Measure

* Fragmentation Gradient Descent

* Implementation and Evaluation

» Conclusion

Packing improves allocation

 After GPU sharing, "1 GPU" left in idle but not allocatable to Task A
« Mitigate fragmentation with packing Task A

6 CPUs (.75 GPU

Task A Task A — Task A + B
6 CPUs | 1 GPU 6 CPUs |.75GPU | : : 2 CPUs | .25 GPU
D 6 CPUs |.75 GPU
g Lack
- GPU
GPU -
CPU GPU : CPU GPU . CPU GPU
h
Node A (g total) (1 total) | 219 | (9 total) (1 total) | PAKINT- | (9 total) (1 total)
& Down- :
Task B scaling Task B :
2 CPUs | 1 GPU 2 CPUs |.25 GPU Lack
CPU
‘--n'
<+ Fragmentation
CPU GPU CPU GPU CPU GPU

Node B (¢ total) (1 total) (6 total) (1 total) (6 total) (1 total)

Recap: Multi-Resource Bin-Packing

GPU Task Resource Request

‘ Mem
CPU 4

Best Fit Dot Product
Node Resource Capacity /

"Remai ng 'Remajning

Node A Resoyrce A1) Node B Resource B || Node C

Best Fit: Verma et al. "Borg" EuroSys '15
Dot Product: Grandl et al. "Tetris" SIGCOMM '14

@5E Task Resource Request Node Resource Cépacity
Does classical multi-resource
bin-packing work for GPUs"

How to formulate GPUs into a resource dimension?

Attempt #1

* Pool together a node’s multiple available GPUs into one logical GPU
* e.9., 2-GPU node with <0.9 GPUs, 0.4 GPUs> => having 1.3 GPUs idle

 Problem:

* GPU pooling ignores the allocation boundary between GPUs
« Unable to differentiate the fragmentation on individual GPUs

X Vv
GPU-1 . 0.9 1 3 GPUS

11

Attempt #2

 Treat each GPU as an independent resource dimension
* e.9., 2-GPU node has 3D-resource vector <16 CPUs, 0.9 GPUs, 0.4 GPUs>

* Problem:
« Choosing the wrong expansion of task resource vectors may block allocation

Task <2 CPUs, 0.5 GPUs>

2 CPUs

Task <2 CPUs, 0.5 GPUs, 0 GPUs>

CPU 16 CPUs

Task <2 CPUs, 0 GPUs, 0.5 GPUs>

12

Attempt #2

 Treat each GPU as an independent resource dimension
* .9., a 2-GPU node with resource vector <16 CPUs, 0.9 GPUs, 0.4 GPUs>

* Problem:
 Unlike other resources, GPUs are interchangeable!

A GPU task has a "deformable" resource vector wrt available GPUs
on the nodes, invalidating the conventional bin-packing formulation!

CPU 16 CPUs 2 CPUs Task <2 CPUs, 0.5 GPUs>

Task <2 CPUs, 0.5 GPUs, 0 GPUs>
0.5G <

Task <2 CPUs, 0 GPUs, 0.5 GPUs>

13

@)GE Task Resource Request Node Resource Capacity
Does classical multi-resource
bin-packing work for GPUs"

Not for shared GPUs! Need a new approach to address the
fragmentation problem of scheduling GPU-sharing workloads

14

Agenda

« GPU Sharing & Fragmentation in ML Clusters
* Existing Approaches

* The Fragmentation Measure

* Fragmentation Gradient Descent

* Implementation and Evaluation

» Conclusion

15

"To Measure Is the First Step to Improve”

* How to formally define fragmentation?
* "You keep using that word. | do not think it means what you think it means.’

* How to further reason the sources of fragmentation?
* Insufficient GPUs, stranded GPUs, or both, how much do they contribute?

* How to efficiently mitigate fragmentation?
« Simpler and more explainable than using ML techniques

16

Fragmentation in absolute term ®

Bad Def.: "A node is fragmented if and only if it cannot run any task”

tGPu | -
| Task Skyline sk D (D) Ignorant of high-demanding workloads
Frag JaskA Non-Frag () (e.g., Task D has no say on fragmentation)
! Node A;/
Node B : /,|:L_—/
X
: T"_”f_’i_B.»"V (2) skyline tasks (A, B, C) dominate others, regardless
---------- |
Task C Node C ' Tack C of their tiny population (0.06% in our traces).
{4 O ---------- * Average skyline task demand: <3.2 CPUs, 0.07 GPUs>
S e CPU is far below avg. task demand: <9.4 CPUs, 0.9 GPUs>
O ...

Y(X)-axis: Idle GPU (CPU) on nodes or Requested GPU (CPU) of tasks @ Vulnerable to small workload changes (C -> C’).
Unable to differentiate fragmentation sources.

17

The absolute measure is overly restrictive
In fragmentation identification

« Scheduling 8k tasks to 6.2k GPUs

< 100

> . B =]

et —®- BestFit Alloc. -

O 75_ - ¥ ot

|§ Random Alloc. _

~ N =

S 50- R

o " —8— BestFit Frag.

LT r

5 227 4 Random Frag.

o A _ , i

<_E O __ e 9T .I A ;‘ e 4’;‘—"‘— !I! = -~ J.'-T.-'l [ﬁ
0 20 40 60 80 100

12
Arrived workloads (in % of cluster GPU capacity) /

Fragmentation stays at a low level (<5%) throughout the scheduling
— Failing to provide early feedbacks to the scheduling quality

A statistical fragmentation measure ©

The next task to arrive is considered to be randomly sampled from typical workloads

Fragmentation region 1 GPU |
. Q1 & Q2 Insufficient GPU nt T I
» Q4: Stranded GPU + +
- X-axis: Non-GPU tasks Q2 + Qu:
. . Insufficient GPU snepn: Insufficient CPU & GPU
Frag rate: the likelihood that the e - - ccocemm ™
arriving task falls in frag regions®ssg pTasks || Tasks
* Frag rate®: £8PV =1—Y,c0.p HEE s el
(b € (0,1): task popularity) Bk Zagmentanon i + l’éft‘ii'sg‘ij”é‘éESJ
e Frag amount: ESPU = £GPU RGPU 1 : IV
 Cluster frag amount: etV =y, EGPU Tasks | A sk
o x D & R—B >
L RCPU XR

X-axis: Non-GPU tasks
* Roughly, as finer-grained calculation should consider fragmentation at per-GPU level. See more in the §3.2 of the paper.

A statistical fragmentation measure ©

Given the task distribution of a target workload, it measures the
expected GPU resources that cannot be allocated
 Further broken down into different sources of fragmentation: Insufficient

GPU
100

801
60
40+
201

CDF (%)

, stranded GPU (Q4), lack both (Q1), non-GPU tasks (X-axis).

4~ |

‘r_—d—

| 3ck CPU (Stranded) "

Lack GPU
== == | 3ck CPU and GPU
== = All Fragment

00 20 40 60 80 100

Fragmentation Rate

GPU Frag (Deficient) CT)aSk b

11 OTaskA 1 Node A

O

Task B Task C
0 kB zare O Cepy
_/

20

A statistical fragmentation measure ©

» Sensitive to scheduling quality; g)
useful feedback at early stages ¢ 7 Clustering

D(; BestFit

o —— FGD

. - GPU =
Scheduling: Frag rate fou) 348 BT o
Remalnlng resources Rn l Arrived workloads (in % of cluster GPU capacity)
Until all remaining resources "

—~ ===+ Random
are unallocatable to any tasks & | Lo
(l.e., Frag rate = 100%). 5 Clustering

12 10 Packing

—~ BestFit

g 2 FGD

» Cluster Frag = X, (f,GPURGPYy - 2 ()
0/ \- i 0 20 40 60 80 100 120
/ Total (/O) normalized by Arrived workloads (in % of cluster GPU capacity)

cluster GPU capacity

Clustering: Xiao et al. “Gandiva" OSD/ '18

Packing: Weng et al. “MLaaS" NSDI '22 2

Agenda

« GPU Sharing & Fragmentation in ML Clusters
* Existing Approaches

* The Fragmentation Measure

* Fragmentation Gradient Descent

* Implementation and Evaluation

« Conclusion

22

Fragmentation Gradient

Descent (FGD)

Heuristic: schedule tasks towards the steepest descent of fragmentation

FGD scores nodes in parallel, thus scaling to large clusters: each decision
can be made in hundred of milliseconds in cluster with 1200 nodes

Algorithm 1: Task scheduling of FGD

Input :Cluster N, incoming task m, target workload M
Output : Assigned node n*

1 Initialize node score set S <— &, and output n* < @.
@ 2 parallel for node n € N do

3 if Insufficient resources || constraints not met then

4 | Return > Filter out unavailable nodes

5 n~ < AssignTaskToNode(m,n) > Hypothetically
@ 6 A < F,- (M) — F,(M) > Fragmentation increment
7 | S« SU(nA)

8 if S # & then

@ 9 n* < argmin,cgA > pick the node with the least A.

AV

Task
@:2..." @ @
@ FA+= 40}.‘3’00 @ FC+= _20
¥ (Q) Fg+=10:
v
Node A Node B

Node C

23

A running example of FGD scheduling

Task A Task B Task C
2 accessible GPUs 0.3 GPU 0.5 GPU 0.7 GPU
| | |
A | 0.5 GPU idle FGD 0.5 FGD —» 0 FGD
V
Ly 2 S
B | 1.0 GPU idle 0.7 0.7
Frag amount: To GPU A: A will be fragmented to Task A, B, C

Y = PP Re™Y To GPU B: B will be no fragmentation to any Task

2) To GPU A: A will have no GPU left, thus no fragmentation
To GPU B: B will be fragmented to Task A, B, C

(3 To GPU A: Impossible
To GPU B: B will have no GPU left, thus no fragmentation

Agenda

« GPU Sharing & Fragmentation in ML Clusters
* Existing Approaches

* The Fragmentation Measure

* Fragmentation Gradient Descent
 Implementation and Evaluation

» Conclusion

25

L arge-scale trace-driven emulation

 Implementation: a pluggable T ~--+ Random
scheduler in Kubernetes 20 X T Chetering
: : : G N T P S PR i
+ High-fidelity event-driven emulator 10| N S —
* Cluster-H: 1.2k nodes, 6.2k GPUs © 5 T' " FGD
. . Ideal
« Production trace of 8k tasks asinput = 9 gp so T T 160 110 Do
R P|Ugil’] + Emulator: 10k lines of code Arrived workloads (in % of cluster GPU capacity)
T O 1250 =:== Random
« FGD outperforms all heuristics S 1000 L metero
1. Has the least amount of GPU fragment < 750] == Clustering
) Q - Packi
2. Hosts more tasks before saturation g >001 o
3. Packs tasks to nodes S 258",;'/ — FGD
_A00 0 20 40 60 80 100
4. (F\[)Jetﬂtzjgsesagg%”ooncaalt’legoc-;géjosgéSg) 49% Arrived workloads (in % of cluster GPU capacity)
Emulator: https://github.com/hkust-adsl/kubernetes-scheduler-simulator * Clustering: Xiao et al. "Gandiva" OSDI '18

Traces: https://github.com/alibaba/clusterdata/tree/master/cluster-trace-gpu-v2023 ~ « Packing: Weng et al. "MLaaS" NSDI '22 26

https://github.com/hkust-adsl/kubernetes-scheduler-simulator
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-gpu-v2023

Unallocated GPU (%)
S ©

=
(9]

Unallocated GPU (%)
|_I
o

N
o

=
ol

=
o

(521

wu

Under varying workload distribution

GPU-Sharing Tasks

13.
10.9
8.7

B FGD I Packing B DotProd
[Bestrit [Clustering EEl Random

40% 60% 80% 100%
Proportion of GPU-sharing workloads in terms of GPU requests

Tasks with GPU-type constraints

1 I FGD Bl Packing I DotProd
B BestFit B Clustering B Random

10% 20% 25% 33%
Proportion of workloads with GPU type constraints in terms of GPU requests

Unallocated GPU (%)

Unallocated GPU (%)

N
o

20 1
B BestFit B Clustering IEEE Random

Multi-GPU Tasks

1 =M FGD BN Packing I DotProd
B BestFit @ Clustering B Random

20% 30% 40% 50%

Proportion of multi-GPU workloads in terms of GPU requests

Non-GPU Tasks

B FGD Bl Packing A DotProd

5% 10% 20% 25%
Proportion of non-GPU workloads in terms of task number

27

Agenda

« GPU Sharing & Fragmentation

* Existing Approaches

* The Fragmentation Measure

* Fragmentation Gradient Descent
* Implementation and Evaluation
 Conclusion

28

Trace & Code

ARTIFACT ARTIFACT ARTIFACT | (@)% (e]
. EVALUATED EVALUATED EVALUATED | i ik
Conclusion gpeenx, | | gusen, | | gpsenix,

AVAILABLE REPRODUCED O BNz r

Allocating partial GPUs results in severe fragmentation
* A new challenge that cannot be addressed using conventional bin-
packing approaches
A new fragmentation metrics

* Measure the expected GPU resources that cannot be allocated given a
workload distribution

« Support breakdown analysis to reason about fragmentation

Fragmentation Gradient Descent (FGD)
« Schedules tasks towards the steepest descent of GPU fragmentation Paper
» Packs tasks to fewer nodes, substantially reducing unallocated GPUs Stz
« Easy to implement

