
Beware of Fragmentation:
Scheduling GPU-Sharing Workloads

with Fragmentation Gradient Descent

Paper published in USENIX ATC 2023

Qizhen Weng†, Lingyun Yang†, Yinghao Yu*†, Wei Wang†,
Xiaochuan Tang*, Guodong Yang*, Liping Zhang*

†HKUST *Alibaba Group

1

Agenda

• GPU Sharing & Fragmentation in ML Cluster

• Inefficiency of Existing Approaches

• The Fragmentation Measure

• Fragmentation Gradient Descent

• Implementation and Evaluation

• Conclusion

2

ML-as-a-Service (MLaaS) Cloud

All-in-one platform for users
using different ML frameworks

Support various workloads:
training, inference, evaluation …

ML tasks running in containers
scheduled to >1000 GPU servers

3
[1] Weng et al., "MLaaS in the Wild: Workload analysis and scheduling in large-scale

heterogeneous GPU clusters," in NSDI 2022.

GPU underutilization

25-50% GPU utilization in production ML clusters [1-4]
• Most ML tasks cannot fully utilize the capability of modern GPUs

4

[1] Weng et al., "MLaaS in the Wild: Workload analysis and scheduling in large-scale heterogeneous GPU clusters," in NSDI 2022.

[2] Narayanan et al., "Heterogeneity-aware cluster scheduling policies for deep learning workloads," in OSDI 2020

[3] Hu et al., "Characterization and prediction of deep learning workloads in large-scale GPU datacenters," in SC 2021.

[4] Li et al., "Lyra: Elastic scheduling for deep learning clusters," in EuroSys 2023.

Alibaba PAI trace [1]

The need for GPU sharing

• GPU sharing lets multiple tasks run on a single GPU
• e.g., via DL framework, CUDA API interception, or hardware support (MIG)

• Sharing saves 50% GPUs in Alibaba PAI [1]

5[1] Weng et al., "MLaaS in the Wild: Workload analysis and scheduling in large-scale heterogeneous GPU clusters," in NSDI 2022.

Yet, partial GPU allocation results in
fragmentation and limits allocation rate

GPU-sharing cluster H with 1.2k nodes, 6.2k GPUs, 8k tasks (Alibaba)
• Fully packed after allocating 92% GPUs, wasting ~500 GPUs

• User experience scheduling failures even with sufficient GPU allocation quotas

6Insufficient GPUs Insufficient CPUs (stranded GPU)

Agenda

• GPU Sharing & Fragmentation in ML Clusters

• Existing Approaches

• The Fragmentation Measure

• Fragmentation Gradient Descent

• Implementation and Evaluation

• Conclusion

7

Packing improves allocation

8

• After GPU sharing, "1 GPU" left in idle but not allocatable to Task A

• Mitigate fragmentation with packing

Recap: Multi-Resource Bin-Packing

9

Best Fit Dot Product

Task Resource Request

Node A Node B Node C

Node Resource Capacity

Task A

Task B

Task C

Remaining
Resource A

CPU

GPU
Mem

Remaining
Resource B

Best Fit: Verma et al. "Borg" EuroSys '15
Dot Product: Grandl et al. "Tetris" SIGCOMM '14

Does classical multi-resource
bin-packing work for GPUs?
How to formulate GPUs into a resource dimension?

10

Task Resource Request

CPU

GPU
Mem

GPU

?
Node Resource Capacity

Attempt #1

• Pool together a node’s multiple available GPUs into one logical GPU
• e.g., 2-GPU node with <0.9 GPUs, 0.4 GPUs> => having 1.3 GPUs idle

• Problem:
• GPU pooling ignores the allocation boundary between GPUs

• Unable to differentiate the fragmentation on individual GPUs

11

GPU-1 0.9

0.4GPU-2

1.3 GPUs

Logical GPU

1-GPU Task×

×

√

Attempt #2

• Treat each GPU as an independent resource dimension
• e.g., 2-GPU node has 3D-resource vector <16 CPUs, 0.9 GPUs, 0.4 GPUs>

• Problem:
• Choosing the wrong expansion of task resource vectors may block allocation

12

GPU-1 0.9

0.4GPU-2

CPU 16 CPUs

Task <2 CPUs, 0.5 GPUs, 0 GPUs>

Task <2 CPUs, 0 GPUs, 0.5 GPUs>

2 CPUs 0.5G

Task <2 CPUs, 0.5 GPUs>

• Treat each GPU as an independent resource dimension
• e.g., a 2-GPU node with resource vector <16 CPUs, 0.9 GPUs, 0.4 GPUs>

• Problem:
• Unlike other resources, GPUs are interchangeable!

Task <2 CPUs, 0 GPUs, 0.5 GPUs>

Attempt #2

13

GPU-1 0.9

0.4GPU-2

CPU 16 CPUs 2 CPUs

A GPU task has a "deformable" resource vector wrt available GPUs

on the nodes, invalidating the conventional bin-packing formulation!

Task <2 CPUs, 0.5 GPUs, 0 GPUs>
0.5G ?

Task <2 CPUs, 0.5 GPUs>

Does classical multi-resource
bin-packing work for GPUs?
Not for shared GPUs! Need a new approach to address the
fragmentation problem of scheduling GPU-sharing workloads

14

Task Resource Request

CPU

GPU
Mem

GPU

?
Node Resource Capacity

Agenda

• GPU Sharing & Fragmentation in ML Clusters

• Existing Approaches

• The Fragmentation Measure

• Fragmentation Gradient Descent

• Implementation and Evaluation

• Conclusion

15

"To Measure is the First Step to Improve"

• How to formally define fragmentation?
• "You keep using that word. I do not think it means what you think it means."

• How to further reason the sources of fragmentation?
• Insufficient GPUs, stranded GPUs, or both, how much do they contribute?

• How to efficiently mitigate fragmentation?
• Simpler and more explainable than using ML techniques

16

Fragmentation in absolute term 

Bad Def.: "A node is fragmented if and only if it cannot run any task"

17

CPU

GPU

O

Node A

Task A

Task B

Task C

Task D

Node B

Node C

CPU

GPU

O

Node A

Task A

Task B

Task C

Task D

Node B

Node C

Task Skyline

CPU

GPU

O

Node A

Task A

Task B

Task C

Task D

Node B

Node C

Task Skyline

Frag Non-Frag

CPU

GPU

O

Node A

Task A

Task B

Task CTask C'

Task D

Node B

Node C

Task Skyline

Frag Non-Frag

downscaling

① Ignorant of high-demanding workloads
(e.g., Task D has no say on fragmentation)

② Skyline tasks (A, B, C) dominate others, regardless
of their tiny population (0.06% in our traces).
• Average skyline task demand: <3.2 CPUs, 0.07 GPUs>

is far below avg. task demand: <9.4 CPUs, 0.9 GPUs>

③ Vulnerable to small workload changes (C -> C’).
Unable to differentiate fragmentation sources.

√ ×

Y(X)-axis: Idle GPU (CPU) on nodes or Requested GPU (CPU) of tasks

The absolute measure is overly restrictive
in fragmentation identification

• Scheduling 8k tasks to 6.2k GPUs

18

Fragmentation stays at a low level (<5%) throughout the scheduling
–– Failing to provide early feedbacks to the scheduling quality

Q1:

Insufficient CPU & GPU
Q2:

Insufficient GPU

Q4:

Insufficient CPU

(Stranded GPU)

X-axis: Non-GPU tasks

A statistical fragmentation measure ☺

Fragmentation region
• Q1 & Q2: Insufficient GPU

• Q4: Stranded GPU

• X-axis: Non-GPU tasks

Frag rate: the likelihood that the
arriving task falls in frag regions

• Frag rate*: 𝑓𝑛
GPU ≅ 1 − σ𝑚∈𝑄3

𝑝𝑚
(𝑝𝑚 ∈ (0, 1]: task popularity)

• Frag amount: 𝐹𝑛
GPU = 𝑓𝑛

GPU 𝑅𝑛
GPU

• Cluster frag amount: 𝐹𝑁
GPU = σ𝑛𝐹𝑛

GPU

19* Roughly, as finer-grained calculation should consider fragmentation at per-GPU level. See more in the §3.2 of the paper.

(Residual

GPUs) TasksTasks

Tasks

Q3: No Fragmentation

The next task to arrive is considered to be randomly sampled from typical workloads

A statistical fragmentation measure ☺

Given the task distribution of a target workload, it measures the
expected GPU resources that cannot be allocated

• Further broken down into different sources of fragmentation: Insufficient
GPU (Q2), stranded GPU (Q4), lack both (Q1), non-GPU tasks (X-axis).

20

A statistical fragmentation measure ☺

21

• Sensitive to scheduling quality;
useful feedback at early stages

• Scheduling: Frag rate 𝑓𝑛
GPU ↑

Remaining resources 𝑅𝑛
GPU ↓

Until all remaining resources
are unallocatable to any tasks
(i.e., Frag rate = 100%).

• Cluster Frag = σ𝑛(𝑓𝑛
GPU𝑅𝑛

GPU)
/ Total (%): normalized by
cluster GPU capacity

Clustering: Xiao et al. “Gandiva" OSDI '18
Packing: Weng et al. “MLaaS" NSDI '22

Agenda

• GPU Sharing & Fragmentation in ML Clusters

• Existing Approaches

• The Fragmentation Measure

• Fragmentation Gradient Descent

• Implementation and Evaluation

• Conclusion

22

Fragmentation Gradient Descent (FGD)

Heuristic: schedule tasks towards the steepest descent of fragmentation

23

Task

Node A Node B Node C

② 𝐹𝐴+= 40

② 𝐹𝐵+= 10

② 𝐹𝐶+= -20
③ √

①

①
①

③

②

①

FGD scores nodes in parallel, thus scaling to large clusters: each decision

can be made in hundred of milliseconds in cluster with 1200 nodes

A running example of FGD scheduling

24

③②①

① To GPU A: A will be fragmented to Task A, B, C (𝐹𝐴
𝐺𝑃𝑈+= 100% * 0.2 – 33% * 0.5)

To GPU B: B will be no fragmentation to any Task (𝐹𝐵
𝐺𝑃𝑈+= 0% * 0.7 - 0) √

② To GPU A: A will have no GPU left, thus no fragmentation (𝐹𝐴
𝐺𝑃𝑈+= 0 – 33% * 0.5) √

To GPU B: B will be fragmented to Task A, B, C (𝐹𝐵
𝐺𝑃𝑈+= 100% * 0.2 – 0)

③ To GPU A: Impossible

To GPU B: B will have no GPU left, thus no fragmentation (𝐹𝐵
𝐺𝑃𝑈+= 0 – 0% * 0.7) √

Frag amount:
𝐹𝑛
GPU = 𝑓𝑛

GPU 𝑅𝑛
GPU

√
√

√

after alloc. before alloc.

Agenda

• GPU Sharing & Fragmentation in ML Clusters

• Existing Approaches

• The Fragmentation Measure

• Fragmentation Gradient Descent

• Implementation and Evaluation

• Conclusion

25

Large-scale trace-driven emulation

• Implementation: a pluggable
scheduler in Kubernetes

• High-fidelity event-driven emulator
• Cluster-H: 1.2k nodes, 6.2k GPUs

• Production trace of 8k tasks as input

• Plugin + Emulator: 10k lines of code

• FGD outperforms all heuristics

1. Has the least amount of GPU fragment

2. Hosts more tasks before saturation

3. Packs tasks to 250+ fewer nodes

4. Reduces unallocated GPUs by 33-49%
(utilizes additional 150-290 GPUs)

26

• Emulator: https://github.com/hkust-adsl/kubernetes-scheduler-simulator
• Traces: https://github.com/alibaba/clusterdata/tree/master/cluster-trace-gpu-v2023

• Clustering: Xiao et al. "Gandiva" OSDI '18
• Packing: Weng et al. "MLaaS" NSDI '22

https://github.com/hkust-adsl/kubernetes-scheduler-simulator
https://github.com/alibaba/clusterdata/tree/master/cluster-trace-gpu-v2023

Under varying workload distribution

27

GPU-Sharing Tasks Multi-GPU Tasks

Tasks with GPU-type constraints Non-GPU Tasks

Agenda

• GPU Sharing & Fragmentation

• Existing Approaches

• The Fragmentation Measure

• Fragmentation Gradient Descent

• Implementation and Evaluation

• Conclusion

28

Conclusion

Allocating partial GPUs results in severe fragmentation
• A new challenge that cannot be addressed using conventional bin-

packing approaches

A new fragmentation metrics
• Measure the expected GPU resources that cannot be allocated given a

workload distribution

• Support breakdown analysis to reason about fragmentation

Fragmentation Gradient Descent (FGD)
• Schedules tasks towards the steepest descent of GPU fragmentation

• Packs tasks to fewer nodes, substantially reducing unallocated GPUs

• Easy to implement

29

Trace & Code

Paper

